Refactor generate_interaction_plot_configs() to use more precomputed values

This commit is contained in:
2024-09-12 01:25:25 -04:00
parent d010f52e85
commit 53d4695428

View File

@@ -435,79 +435,77 @@ generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_la
generate_interaction_plot_configs <- function(df, variables) { generate_interaction_plot_configs <- function(df, variables) {
configs <- list() configs <- list()
# Predefine y-limits and annotation y-values for each variable # Define common y-limits and other attributes for each variable dynamically
variable_properties <- list( limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
"L" = list(ylim = c(-65, 65), annotations_y = c(45, 25, -25, -35, -45)),
"K" = list(ylim = c(-65, 65), annotations_y = c(45, 25, -25, -35, -45)),
"r" = list(ylim = c(-0.65, 0.65), annotations_y = c(0.45, 0.25, -0.25, -0.35, -0.45)),
"AUC" = list(ylim = c(-6500, 6500), annotations_y = c(4500, 2500, -2500, -3500, -4500))
)
for (variable in variables) { for (variable in variables) {
props <- variable_properties[[variable]] # Dynamically generate the names of the columns
var_info <- list(
ylim = limits_map[[variable]],
lm_model = df[[paste0("lm_", variable)]][[1]], # Access the precomputed linear model
sd_col = paste0("WT_sd_", variable),
delta_var = paste0("Delta_", variable),
z_shift = paste0("Z_Shift_", variable),
z_lm = paste0("Z_lm_", variable)
)
# Dynamically generate column names # Extract the precomputed linear model coefficients
wt_sd_col <- paste0("WT_sd_", variable) lm_line <- list(
delta_var <- paste0("Delta_", variable) intercept = coef(var_info$lm_model)[1],
z_shift <- paste0("Z_Shift_", variable) slope = coef(var_info$lm_model)[2]
z_lm <- paste0("Z_lm_", variable) )
lm_score <- paste0("lm_Score_", variable) # Precomputed lm score
r_squared <- paste0("r_squared_", variable) # Precomputed R^2
# Create annotation list # Set annotations dynamically for ZShift, Z lm Score, NG, DB, SM
annotation_labels <- c("ZShift =", "lm ZScore =", "NG =", "DB =", "SM =") base_y <- if (variable == "L" || variable == "K") 45 else if (variable == "r") 0.45 else 4500
annotations <- lapply(seq_along(annotation_labels), function(i) { annotations <- list(
list(x = 1, y = props$annotations_y[i], label = paste(annotation_labels[i], round(df[[c(z_shift, z_lm, "NG", "DB", "SM")[i]]], 2))) list(x = 1, y = base_y, label = paste("ZShift =", round(df[[var_info$z_shift]], 2))),
}) list(x = 1, y = base_y - 20, label = paste("lm ZScore =", round(df[[var_info$z_lm]], 2))),
list(x = 1, y = base_y - 70, label = paste("NG =", df$NG)),
list(x = 1, y = base_y - 80, label = paste("DB =", df$DB)),
list(x = 1, y = base_y - 90, label = paste("SM =", df$SM))
)
# Create scatter plot configuration using precomputed lm scores # Add scatter plot configuration for this variable
scatter_config <- list( configs[[length(configs) + 1]] <- list(
df = df, df = df,
x_var = "conc_num_factor", x_var = "conc_num_factor",
y_var = delta_var, y_var = var_info$delta_var,
plot_type = "scatter", plot_type = "scatter",
title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]), title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
ylim_vals = props$ylim, ylim_vals = var_info$ylim,
annotations = annotations, annotations = annotations,
lm_line = lm_line, # Precomputed linear model
error_bar = list( error_bar = list(
ymin = 0 - (2 * df[[wt_sd_col]][1]), ymin = 0 - (2 * df[[var_info$sd_col]][1]),
ymax = 0 + (2 * df[[wt_sd_col]][1]) ymax = 0 + (2 * df[[var_info$sd_col]][1])
), ),
x_breaks = unique(df$conc_num_factor), x_breaks = unique(df$conc_num_factor),
x_labels = unique(as.character(df$conc_num)), x_labels = unique(as.character(df$conc_num)),
x_label = unique(df$Drug[1]), x_label = unique(df$Drug[1]),
shape = 3, shape = 3,
size = 0.6, size = 0.6,
position = "jitter", position = "jitter"
lm_line = list(
intercept = coef(lm(df[[delta_var]] ~ df$conc_num_factor))[1], # Intercept from lm model
slope = coef(lm(df[[delta_var]] ~ df$conc_num_factor))[2] # Slope from lm model
)
) )
# Create box plot configuration for this variable # Add box plot configuration for this variable
box_config <- list( configs[[length(configs) + 1]] <- list(
df = df, df = df,
x_var = "conc_num_factor", x_var = "conc_num_factor",
y_var = variable, y_var = variable,
plot_type = "box", plot_type = "box",
title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]), title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
ylim_vals = props$ylim, ylim_vals = var_info$ylim,
annotations = annotations, annotations = annotations,
error_bar = FALSE, error_bar = FALSE, # Boxplots typically don't need error bars
x_breaks = unique(df$conc_num_factor), x_breaks = unique(df$conc_num_factor),
x_labels = unique(as.character(df$conc_num)), x_labels = unique(as.character(df$conc_num)),
x_label = unique(df$Drug[1]) x_label = unique(df$Drug[1])
) )
# Append both scatter and box plot configurations
configs <- append(configs, list(scatter_config, box_config))
} }
return(configs) return(configs)
} }
# Adjust missing values and calculate ranks # Adjust missing values and calculate ranks
adjust_missing_and_rank <- function(df, variables) { adjust_missing_and_rank <- function(df, variables) {