Append plots to same file instead of overwriting
This commit is contained in:
@@ -294,12 +294,16 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, ove
|
||||
lm_means_sds <- calculations %>%
|
||||
group_by(across(all_of(group_vars))) %>%
|
||||
summarise(
|
||||
mean_mean_L = mean(mean_L, na.rm = TRUE),
|
||||
mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
|
||||
sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
|
||||
mean_mean_K = mean(mean_K, na.rm = TRUE),
|
||||
mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
|
||||
sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
|
||||
mean_mean_r = mean(mean_r, na.rm = TRUE),
|
||||
mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
|
||||
sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
|
||||
mean_mean_AUC = mean(mean_AUC, na.rm = TRUE),
|
||||
mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
|
||||
sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
|
||||
)
|
||||
@@ -408,8 +412,10 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs) {
|
||||
plot_configs # Multiple groups
|
||||
}
|
||||
|
||||
for (group in plot_groups) {
|
||||
# Open the PDF device once for all plots
|
||||
pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
|
||||
|
||||
for (group in plot_groups) {
|
||||
static_plots <- list()
|
||||
plotly_plots <- list()
|
||||
|
||||
@@ -420,31 +426,26 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs) {
|
||||
config <- plots[[i]]
|
||||
df <- config$df
|
||||
|
||||
if (config$plot_type == "bar") {
|
||||
# Set up aes mapping based on plot type
|
||||
aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
|
||||
if (!is.null(config$color_var)) {
|
||||
aes_mapping <- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
|
||||
aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
|
||||
} else {
|
||||
aes_mapping <- aes(x = .data[[config$x_var]])
|
||||
}
|
||||
} else if (config$plot_type == "density") {
|
||||
if (!is.null(config$color_var)) {
|
||||
aes_mapping <- aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
|
||||
} else {
|
||||
aes_mapping <- aes(x = .data[[config$x_var]])
|
||||
aes(x = .data[[config$x_var]])
|
||||
}
|
||||
} else {
|
||||
# For scatter and other plot types
|
||||
if (!is.null(config$y_var) && !is.null(config$color_var)) {
|
||||
aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
|
||||
aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
|
||||
} else if (!is.null(config$y_var)) {
|
||||
aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
|
||||
aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
|
||||
} else {
|
||||
aes_mapping <- aes(x = .data[[config$x_var]])
|
||||
aes(x = .data[[config$x_var]])
|
||||
}
|
||||
}
|
||||
|
||||
plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
|
||||
|
||||
# Add appropriate plot layer based on plot type
|
||||
plot <- switch(config$plot_type,
|
||||
"scatter" = generate_scatter_plot(plot, config),
|
||||
"box" = generate_boxplot(plot, config),
|
||||
@@ -453,6 +454,7 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs) {
|
||||
plot # default (unused)
|
||||
)
|
||||
|
||||
# Add labels and title
|
||||
if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
|
||||
if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
|
||||
if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
|
||||
@@ -460,56 +462,66 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs) {
|
||||
|
||||
# Add error bars if specified
|
||||
if (!is.null(config$error_bar) && config$error_bar) {
|
||||
error_bar_color <- if (!is.null(config$error_bar_params$color)) {
|
||||
config$error_bar_params$color
|
||||
} else {
|
||||
"red"
|
||||
error_bar_color <- config$error_bar_params$color %||% "red"
|
||||
y_mean_col <- paste0("mean_", config$y_var)
|
||||
y_sd_col <- paste0("sd_", config$y_var)
|
||||
|
||||
if (!is.null(config$error_bar_params$center_point)) {
|
||||
plot <- plot + geom_point(aes(
|
||||
x = .data[[config$x_var]],
|
||||
y = .data[[y_mean_col]]),
|
||||
color = error_bar_color,
|
||||
shape = 16)
|
||||
}
|
||||
|
||||
# Use error_bar_params if provided, otherwise calculate from mean and sd
|
||||
if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
|
||||
plot <- plot + geom_errorbar(aes(
|
||||
ymin = config$error_bar_params$ymin,
|
||||
ymax = config$error_bar_params$ymax,
|
||||
color = error_bar_color))
|
||||
ymax = config$error_bar_params$ymax),
|
||||
color = error_bar_color)
|
||||
} else {
|
||||
y_mean_col <- paste0("mean_", config$y_var)
|
||||
y_sd_col <- paste0("sd_", config$y_var)
|
||||
plot <- plot + geom_errorbar(aes(
|
||||
ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
|
||||
ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
|
||||
color = error_bar_color))
|
||||
ymax = .data[[y_mean_col]] + .data[[y_sd_col]]),
|
||||
color = error_bar_color)
|
||||
}
|
||||
}
|
||||
|
||||
# Convert ggplot to plotly for interactive version
|
||||
plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
|
||||
|
||||
# Store both static and interactive versions
|
||||
static_plots[[i]] <- plot
|
||||
plotly_plots[[i]] <- plotly_plot
|
||||
}
|
||||
|
||||
pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
|
||||
|
||||
# Print the plots to the PDF (one page per plot or in a grid)
|
||||
if (is.null(grid_layout)) {
|
||||
# Print each plot individually on separate pages if no grid layout is specified
|
||||
for (plot in static_plots) {
|
||||
print(plot)
|
||||
}
|
||||
} else {
|
||||
# Arrange plots in grid layout on a single page
|
||||
grid.arrange(
|
||||
grobs = static_plots,
|
||||
ncol = grid_layout$ncol,
|
||||
nrow = grid_layout$nrow
|
||||
)
|
||||
}
|
||||
|
||||
dev.off()
|
||||
|
||||
# out_html_file <- file.path(out_dir, paste0(filename, ".html"))
|
||||
# message("Saving combined HTML file: ", out_html_file)
|
||||
# htmltools::save_html(
|
||||
# htmltools::tagList(plotly_plots),
|
||||
# file = out_html_file
|
||||
# )
|
||||
}
|
||||
|
||||
# Close the PDF device after all plots are done
|
||||
dev.off()
|
||||
|
||||
# Optional: Uncomment and save the interactive HTML version if needed
|
||||
# out_html_file <- file.path(out_dir, paste0(filename, ".html"))
|
||||
# message("Saving combined HTML file: ", out_html_file)
|
||||
# htmltools::save_html(
|
||||
# htmltools::tagList(plotly_plots),
|
||||
# file = out_html_file
|
||||
# )
|
||||
}
|
||||
|
||||
generate_scatter_plot <- function(plot, config) {
|
||||
@@ -519,7 +531,7 @@ generate_scatter_plot <- function(plot, config) {
|
||||
size <- if (!is.null(config$size)) config$size else 1.5
|
||||
position <-
|
||||
if (!is.null(config$position) && config$position == "jitter") {
|
||||
position_jitter(width = 0.2, height = 0)
|
||||
position_jitter(width = 0.3, height = 0.1)
|
||||
} else {
|
||||
"identity"
|
||||
}
|
||||
@@ -727,47 +739,66 @@ generate_interaction_plot_configs <- function(df, type) {
|
||||
r = c(-0.6, 0.6),
|
||||
AUC = c(-6000, 6000)
|
||||
)
|
||||
|
||||
overall_plot_configs <- list()
|
||||
|
||||
stats_plot_configs <- list()
|
||||
stats_boxplot_configs <- list()
|
||||
delta_plot_configs <- list()
|
||||
|
||||
# Overall statistics plots
|
||||
OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
|
||||
|
||||
for (var in names(limits_map)) {
|
||||
y_limits <- limits_map[[var]]
|
||||
for (plot_type in c("scatter", "box")) {
|
||||
|
||||
# Use the pre-calculated lm intercept and slope from the dataframe
|
||||
lm_intercept_col <- paste0("lm_intercept_", var)
|
||||
lm_slope_col <- paste0("lm_slope_", var)
|
||||
for (var in names(limits_map)) {
|
||||
y_limits <- limits_map[[var]]
|
||||
|
||||
# Ensure no NA or invalid values in lm_line calculations
|
||||
intercept_value <- mean(df[[lm_intercept_col]], na.rm = TRUE)
|
||||
slope_value <- mean(df[[lm_slope_col]], na.rm = TRUE)
|
||||
# Use the pre-calculated lm intercept and slope from the dataframe
|
||||
lm_intercept_col <- paste0("lm_intercept_", var)
|
||||
lm_slope_col <- paste0("lm_slope_", var)
|
||||
|
||||
plot_config <- list(
|
||||
df = df,
|
||||
plot_type = "scatter",
|
||||
x_var = "conc_num_factor_factor",
|
||||
y_var = var,
|
||||
shape = 16,
|
||||
x_label = unique(df$Drug)[1],
|
||||
title = sprintf("%s Scatter RF for %s with SD", OrfRep, var),
|
||||
coord_cartesian = y_limits,
|
||||
error_bar = TRUE,
|
||||
error_bar_params = list(
|
||||
color = "red"
|
||||
),
|
||||
x_breaks = unique(df$conc_num_factor_factor),
|
||||
x_labels = as.character(unique(df$conc_num)),
|
||||
position = "jitter",
|
||||
smooth = TRUE,
|
||||
lm_line = list(
|
||||
intercept = intercept_value,
|
||||
slope = slope_value
|
||||
# Ensure no NA or invalid values in lm_line calculations
|
||||
intercept_value <- mean(df[[lm_intercept_col]], na.rm = TRUE)
|
||||
slope_value <- mean(df[[lm_slope_col]], na.rm = TRUE)
|
||||
|
||||
# Common plot configuration
|
||||
plot_config <- list(
|
||||
df = df,
|
||||
x_var = "conc_num_factor_factor",
|
||||
y_var = var,
|
||||
shape = 16,
|
||||
x_label = unique(df$Drug)[1],
|
||||
coord_cartesian = y_limits,
|
||||
x_breaks = unique(df$conc_num_factor_factor),
|
||||
x_labels = as.character(unique(df$conc_num)),
|
||||
lm_line = list(
|
||||
intercept = intercept_value,
|
||||
slope = slope_value
|
||||
)
|
||||
)
|
||||
)
|
||||
overall_plot_configs <- append(overall_plot_configs, list(plot_config))
|
||||
|
||||
# Add specific configurations for scatter and box plots
|
||||
if (plot_type == "scatter") {
|
||||
plot_config$plot_type <- "scatter"
|
||||
plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
|
||||
plot_config$error_bar = TRUE
|
||||
plot_config$error_bar_params <- list(
|
||||
color = "red",
|
||||
center_point = TRUE
|
||||
)
|
||||
plot_config$position <- "jitter"
|
||||
|
||||
# Append to scatter plot configurations
|
||||
stats_plot_configs <- append(stats_plot_configs, list(plot_config))
|
||||
|
||||
} else if (plot_type == "box") {
|
||||
plot_config$plot_type <- "box"
|
||||
plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
|
||||
plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
|
||||
|
||||
# Append to boxplot configurations
|
||||
stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Delta interaction plots
|
||||
@@ -850,7 +881,8 @@ generate_interaction_plot_configs <- function(df, type) {
|
||||
grid_nrow <- ceiling(num_plots / grid_ncol)
|
||||
|
||||
return(list(
|
||||
list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
|
||||
list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_plot_configs),
|
||||
list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_boxplot_configs),
|
||||
list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
|
||||
))
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user