Append plots to same file instead of overwriting

This commit is contained in:
2024-10-02 15:19:36 -04:00
parent e856102851
commit 744627fcb6

View File

@@ -294,12 +294,16 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, ove
lm_means_sds <- calculations %>%
group_by(across(all_of(group_vars))) %>%
summarise(
mean_mean_L = mean(mean_L, na.rm = TRUE),
mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
mean_mean_K = mean(mean_K, na.rm = TRUE),
mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
mean_mean_r = mean(mean_r, na.rm = TRUE),
mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
mean_mean_AUC = mean(mean_AUC, na.rm = TRUE),
mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
)
@@ -408,8 +412,10 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs) {
plot_configs # Multiple groups
}
for (group in plot_groups) {
# Open the PDF device once for all plots
pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
for (group in plot_groups) {
static_plots <- list()
plotly_plots <- list()
@@ -420,31 +426,26 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs) {
config <- plots[[i]]
df <- config$df
if (config$plot_type == "bar") {
# Set up aes mapping based on plot type
aes_mapping <- if (config$plot_type == "bar" || config$plot_type == "density") {
if (!is.null(config$color_var)) {
aes_mapping <- aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
} else {
aes_mapping <- aes(x = .data[[config$x_var]])
}
} else if (config$plot_type == "density") {
if (!is.null(config$color_var)) {
aes_mapping <- aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
} else {
aes_mapping <- aes(x = .data[[config$x_var]])
aes(x = .data[[config$x_var]])
}
} else {
# For scatter and other plot types
if (!is.null(config$y_var) && !is.null(config$color_var)) {
aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
} else if (!is.null(config$y_var)) {
aes_mapping <- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
} else {
aes_mapping <- aes(x = .data[[config$x_var]])
aes(x = .data[[config$x_var]])
}
}
plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
# Add appropriate plot layer based on plot type
plot <- switch(config$plot_type,
"scatter" = generate_scatter_plot(plot, config),
"box" = generate_boxplot(plot, config),
@@ -453,6 +454,7 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs) {
plot # default (unused)
)
# Add labels and title
if (!is.null(config$title)) plot <- plot + ggtitle(config$title)
if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
@@ -460,56 +462,66 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs) {
# Add error bars if specified
if (!is.null(config$error_bar) && config$error_bar) {
error_bar_color <- if (!is.null(config$error_bar_params$color)) {
config$error_bar_params$color
} else {
"red"
error_bar_color <- config$error_bar_params$color %||% "red"
y_mean_col <- paste0("mean_", config$y_var)
y_sd_col <- paste0("sd_", config$y_var)
if (!is.null(config$error_bar_params$center_point)) {
plot <- plot + geom_point(aes(
x = .data[[config$x_var]],
y = .data[[y_mean_col]]),
color = error_bar_color,
shape = 16)
}
# Use error_bar_params if provided, otherwise calculate from mean and sd
if (!is.null(config$error_bar_params$ymin) && !is.null(config$error_bar_params$ymax)) {
plot <- plot + geom_errorbar(aes(
ymin = config$error_bar_params$ymin,
ymax = config$error_bar_params$ymax,
color = error_bar_color))
ymax = config$error_bar_params$ymax),
color = error_bar_color)
} else {
y_mean_col <- paste0("mean_", config$y_var)
y_sd_col <- paste0("sd_", config$y_var)
plot <- plot + geom_errorbar(aes(
ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
color = error_bar_color))
ymax = .data[[y_mean_col]] + .data[[y_sd_col]]),
color = error_bar_color)
}
}
# Convert ggplot to plotly for interactive version
plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
# Store both static and interactive versions
static_plots[[i]] <- plot
plotly_plots[[i]] <- plotly_plot
}
pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
# Print the plots to the PDF (one page per plot or in a grid)
if (is.null(grid_layout)) {
# Print each plot individually on separate pages if no grid layout is specified
for (plot in static_plots) {
print(plot)
}
} else {
# Arrange plots in grid layout on a single page
grid.arrange(
grobs = static_plots,
ncol = grid_layout$ncol,
nrow = grid_layout$nrow
)
}
dev.off()
# out_html_file <- file.path(out_dir, paste0(filename, ".html"))
# message("Saving combined HTML file: ", out_html_file)
# htmltools::save_html(
# htmltools::tagList(plotly_plots),
# file = out_html_file
# )
}
# Close the PDF device after all plots are done
dev.off()
# Optional: Uncomment and save the interactive HTML version if needed
# out_html_file <- file.path(out_dir, paste0(filename, ".html"))
# message("Saving combined HTML file: ", out_html_file)
# htmltools::save_html(
# htmltools::tagList(plotly_plots),
# file = out_html_file
# )
}
generate_scatter_plot <- function(plot, config) {
@@ -519,7 +531,7 @@ generate_scatter_plot <- function(plot, config) {
size <- if (!is.null(config$size)) config$size else 1.5
position <-
if (!is.null(config$position) && config$position == "jitter") {
position_jitter(width = 0.2, height = 0)
position_jitter(width = 0.3, height = 0.1)
} else {
"identity"
}
@@ -727,47 +739,66 @@ generate_interaction_plot_configs <- function(df, type) {
r = c(-0.6, 0.6),
AUC = c(-6000, 6000)
)
overall_plot_configs <- list()
stats_plot_configs <- list()
stats_boxplot_configs <- list()
delta_plot_configs <- list()
# Overall statistics plots
OrfRep <- first(df$OrfRep) # this should correspond to the reference strain
for (var in names(limits_map)) {
y_limits <- limits_map[[var]]
for (plot_type in c("scatter", "box")) {
# Use the pre-calculated lm intercept and slope from the dataframe
lm_intercept_col <- paste0("lm_intercept_", var)
lm_slope_col <- paste0("lm_slope_", var)
for (var in names(limits_map)) {
y_limits <- limits_map[[var]]
# Ensure no NA or invalid values in lm_line calculations
intercept_value <- mean(df[[lm_intercept_col]], na.rm = TRUE)
slope_value <- mean(df[[lm_slope_col]], na.rm = TRUE)
# Use the pre-calculated lm intercept and slope from the dataframe
lm_intercept_col <- paste0("lm_intercept_", var)
lm_slope_col <- paste0("lm_slope_", var)
plot_config <- list(
df = df,
plot_type = "scatter",
x_var = "conc_num_factor_factor",
y_var = var,
shape = 16,
x_label = unique(df$Drug)[1],
title = sprintf("%s Scatter RF for %s with SD", OrfRep, var),
coord_cartesian = y_limits,
error_bar = TRUE,
error_bar_params = list(
color = "red"
),
x_breaks = unique(df$conc_num_factor_factor),
x_labels = as.character(unique(df$conc_num)),
position = "jitter",
smooth = TRUE,
lm_line = list(
intercept = intercept_value,
slope = slope_value
# Ensure no NA or invalid values in lm_line calculations
intercept_value <- mean(df[[lm_intercept_col]], na.rm = TRUE)
slope_value <- mean(df[[lm_slope_col]], na.rm = TRUE)
# Common plot configuration
plot_config <- list(
df = df,
x_var = "conc_num_factor_factor",
y_var = var,
shape = 16,
x_label = unique(df$Drug)[1],
coord_cartesian = y_limits,
x_breaks = unique(df$conc_num_factor_factor),
x_labels = as.character(unique(df$conc_num)),
lm_line = list(
intercept = intercept_value,
slope = slope_value
)
)
)
overall_plot_configs <- append(overall_plot_configs, list(plot_config))
# Add specific configurations for scatter and box plots
if (plot_type == "scatter") {
plot_config$plot_type <- "scatter"
plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
plot_config$error_bar = TRUE
plot_config$error_bar_params <- list(
color = "red",
center_point = TRUE
)
plot_config$position <- "jitter"
# Append to scatter plot configurations
stats_plot_configs <- append(stats_plot_configs, list(plot_config))
} else if (plot_type == "box") {
plot_config$plot_type <- "box"
plot_config$title <- sprintf("%s Boxplot RF for %s with SD", OrfRep, var)
plot_config$position <- "dodge" # Boxplots don't need jitter, use dodge instead
# Append to boxplot configurations
stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
}
}
}
# Delta interaction plots
@@ -850,7 +881,8 @@ generate_interaction_plot_configs <- function(df, type) {
grid_nrow <- ceiling(num_plots / grid_ncol)
return(list(
list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_plot_configs),
list(grid_layout = list(ncol = 2, nrow = 2), plots = stats_boxplot_configs),
list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
))
}