Squashed initial commit
This commit is contained in:
393
qhtcp-workflow/apps/matlab/ezview/EZinterAgingDev0.m
Executable file
393
qhtcp-workflow/apps/matlab/ezview/EZinterAgingDev0.m
Executable file
@@ -0,0 +1,393 @@
|
||||
%single gene L based interaction shift display
|
||||
function EZinterAgingDev0
|
||||
global Exp
|
||||
global matFile
|
||||
|
||||
[matFile,scansDir]=uigetfile('.mat','Open Experiment folder and data storage .mat file name','MultiSelect','on');
|
||||
AgMPDM=load(fullfile(scansDir,'MasterPlateFiles','MPDMmat.mat'));
|
||||
|
||||
for i=1:size(matFile,2)
|
||||
ExpOutmat{i}=fullfile(scansDir,matFile{i});
|
||||
EScan{i}=load(ExpOutmat{1});
|
||||
end
|
||||
|
||||
% single gene L based interaction shift display
|
||||
% function EZinteractDev3
|
||||
% expN=1;
|
||||
|
||||
% User Input decode for application
|
||||
prompt={...
|
||||
'Enter LeftSide Central Boundary in Percent:',...
|
||||
'Enter RightSide Central Boundary in Percent:', ...
|
||||
'Enter Perturbation Numbers for set intersect:' ...
|
||||
'Remove No Growth Infinite Interactors:' ...
|
||||
'Number of Bins for Histograms'...
|
||||
'Subplots(Y), Multiple Plots(N), Suspend Plots(S)'};
|
||||
% 'Select Experiment(zone) number:'
|
||||
|
||||
name='Interaction User Input';
|
||||
numlines=1;
|
||||
defaultanswer={'80','60','1','N','39','Y'};
|
||||
answer=inputdlg(prompt,name,numlines,defaultanswer);
|
||||
|
||||
negPercent=str2double(cell2mat(answer(1)));
|
||||
posPercent=str2double(cell2mat(answer(2)));
|
||||
DMstr=cell2mat(answer(3));
|
||||
DMcomas=strfind((cell2mat(answer(3))),',');
|
||||
removInfinL=answer(4);
|
||||
numBins=str2double(cell2mat(answer(5)));
|
||||
subplotX=answer(6);
|
||||
% expN=str2double(cell2mat(answer(7)));
|
||||
n=0;
|
||||
for i=DMcomas,
|
||||
n=n+1
|
||||
DMsel(n)=str2double(DMstr(i-1:i))
|
||||
if i==max(DMcomas)
|
||||
DMsel(n+1)=str2double(DMstr(i:end))
|
||||
end
|
||||
end
|
||||
|
||||
Rn=Exp(expN).RFmean;
|
||||
Rs=Exp(expN).RFstd;
|
||||
dmN=length(Exp(expN).DM.drug);
|
||||
mpN=length(Exp(expN).MP);
|
||||
% Intc1=3; IntcLst=5;
|
||||
% Calculate Interaction values (with and without
|
||||
% standardDeviation/Upper-Lower boundary compensation
|
||||
for j=1:dmN
|
||||
for m=1:mpN
|
||||
scnN=j + (dmN*(m-1)) % 1,6,11..; 2,7,12 ..; 3,8,13..;
|
||||
Xn{m,j,:}=Exp(expN).scan(scnN).plate(1).CFout(:,5); % Exp(expN).scan(DM{j}(m)).plate(1).CFout(:,5);
|
||||
Xn{m,j,:}(Xn{m,j,:}==0)=140;
|
||||
Xln{m,j,:}=Exp(expN).scan(scnN).plate(1).CFout(:,11); % Exp(expN).scan(DM{j}(m)).plate(1).CFout(:,11);
|
||||
Xhn{m,j,:}=Exp(expN).scan(scnN).plate(1).CFout(:,12); % Exp(expN).scan(DM{j}(m)).plate(1).CFout(:,12);
|
||||
intL{m,j,:}=(Xn{m,j,:} - Rn(j));
|
||||
intL{m,j,:}(Xn{m,j,:}==140)=100;
|
||||
intLhw{m,j,:}=((Xn{m,1,:}-Xn{m,j,:}) - Rn(1)-Rn(j));
|
||||
intLhw{m,j,:}(Xn{m,j,:}==140)=100;
|
||||
deltaXR{m,j}(Xn{m,j} >=(Rn(j)+Rs(j)))=( Xln{m,j}(Xn{m,j} >=(Rn(j)+Rs(j))))- (Rn(j)+Rs(j));
|
||||
deltaXR{m,j}(Xn{m,j} < (Rn(j)-Rs(j)))=( Xhn{m,j}(Xn{m,j} < (Rn(j)-Rs(j))))- (Rn(j)-Rs(j));
|
||||
Xneg=Xhn{m,j}- (Rn(j)-Rs(j));
|
||||
Xpos=Xln{m,j}- (Rn(j)+Rs(j));
|
||||
deltaXR{m,j}=zeros(1,384);
|
||||
|
||||
for i=1:length(Xpos(:))
|
||||
% deltaXR{m,j}(i)=Xpos(i);
|
||||
if deltaXR{m,j}(i)==0
|
||||
try
|
||||
if abs(Xpos(i))<abs(Xneg(i)), deltaXR{m,j}(i)=Xpos(i);end
|
||||
catch
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
for i=1:length(Xneg(:))
|
||||
if deltaXR{m,j}(i)==0, deltaXR{m,j}(i)=Xneg(i); end
|
||||
try
|
||||
if abs(Xpos(i))>abs(Xneg(i)), deltaXR{m,j}(i)=Xneg(i); end
|
||||
catch
|
||||
end
|
||||
end
|
||||
|
||||
deltaXR{m,j,:}(Xln{m,j,:}==0)=100;
|
||||
deltaXR{m,j,:}(isnan(Xln{m,j,:}))=120;
|
||||
deltaXR{m,j,:}(Xhn{m,j,:}==0)=100;
|
||||
deltaXR{m,j,:}(isnan(Xhn{m,j,:}))=120;
|
||||
|
||||
% Compile all gene related L values for the each pert-DM (j).
|
||||
addend=(1+((m-1)*384)) % ((((m-1)*j)*384)+1);
|
||||
intLcmp(addend:addend+383,j)=cell2mat(intL(m,j,:)); % ((addend:addend+383),j)=cell2mat(intL(j,m,:));
|
||||
intLadjcmp(addend:addend+383,j)=cell2mat(deltaXR(m,j,:)); % ((addend:addend+383),j)=cell2mat(deltaXR(j,m,:));
|
||||
end
|
||||
% Remove RFs and Blank (or non annotated ' ') orf data Then
|
||||
% Filter data per user intput
|
||||
intLc{j}=intLcmp(:,j);
|
||||
intLwoRFs{j}(1,:)=intLcmp(Exp(expN).mutSpotIndx.woRFs,j);
|
||||
intLwoRFs{j}(2,:)=Exp(expN).mutSpotIndx.woRFs; % index of non-RF non-blank spots %Crude early intLcmp(385:(mpN-1)*384,j);
|
||||
if strcmpi(removInfinL,'Y')
|
||||
intLwoRFs0{j}(1,:)=intLwoRFs{j}(1,(intLwoRFs{j}(1,:)~=100)); % intLcmp(Exp(1).mutSpotIndx.woRFs,j);
|
||||
intLwoRFs0{j}(2,:)=intLwoRFs{j}(2,(intLwoRFs{j}(1,:)~=100)); % intLcmp(385:(mpN-1)*384,j);
|
||||
clear intLwoRFs
|
||||
intLwoRFs{j}(1,:)=intLwoRFs0{j}(1,:);
|
||||
intLwoRFs{j}(2,:)=intLwoRFs0{j}(2,:);
|
||||
end
|
||||
|
||||
intLwoRFsorted{j}=sortrows(intLwoRFs{j}',1);
|
||||
clear intLcmpSortGT0 intLcmpSortLT0
|
||||
tempIntL=intLwoRFsorted{j}(:,1);
|
||||
intLcmpSortGT0=tempIntL((tempIntL) >=0);
|
||||
intLcmpSortLT0=tempIntL((tempIntL) <0);
|
||||
centPosCnt=round(posPercent/100 * length(intLcmpSortGT0));
|
||||
centNegCnt=round(negPercent/100 * length(intLcmpSortLT0));
|
||||
intLposSel{j}=intLwoRFsorted{j}((length(intLcmpSortLT0)+centPosCnt): end,:);
|
||||
intLnegSel{j}=intLwoRFsorted{j}((1:(length(intLcmpSortLT0)-centNegCnt)),:);
|
||||
posIntboundryCentralVal(j)=intLcmpSortGT0((centPosCnt),:); % For Histogram use
|
||||
negIntboundryCentralVal(j)=intLcmpSortLT0(((length(intLcmpSortLT0))-(centNegCnt)),:); % For Histogram use
|
||||
|
||||
% Find potential Interactors within selected range
|
||||
if j==DMsel(1) % Intc1,
|
||||
InterslstPos{1}=intLposSel{DMsel(1)}(:,2) % intLcmpposInd{Intc1}
|
||||
InterslstNeg{1}=intLnegSel{DMsel(1)}(:,2) % intLcmpnegInd{Intc1}
|
||||
elseif sum(ismember(DMsel,j))==1 %Intc1 && j<=IntcLst
|
||||
InterslstPos{1}=(intersect(InterslstPos{1},intLposSel{j}(:,2))); % ,intLcmpposInd{j}))
|
||||
InterslstNeg{1}=(intersect(InterslstNeg{1},intLnegSel{j}(:,2))); % ,intLcmpnegInd{j}))
|
||||
end
|
||||
|
||||
% Convolute experiment spot index to get scan#, MP# and plateIndx needed
|
||||
% later to obtain genename and other descriptors and correlate data
|
||||
intLposDIndx{j}(:,2)=ceil((intLposSel{j}(:,2))/384); % mp plate numb column
|
||||
intLposDIndx{j}(:,3)=(rem(intLposSel{j}(:,2),384));
|
||||
nn=(intLposDIndx{j}(:,3)==0);
|
||||
intLposDIndx{j}(nn,3)=384;
|
||||
intLposDIndx{j}(:,1)=j + (dmN*((intLposDIndx{j}(:,2))-1)); % scan numb column %intLposDIndx(:,2)* intLposDIndx(:,3);
|
||||
|
||||
intLnegDIndx{j}(:,2)=ceil((intLnegSel{j}(:,2))/384); % mp plate numb column
|
||||
intLnegDIndx{j}(:,3)=(rem(intLnegSel{j}(:,2),384));
|
||||
nn=(intLposDIndx{j}(:,3)==0);
|
||||
intLnegDIndx{j}(nn,3)=384;
|
||||
intLnegDIndx{j}(:,1)=j + (dmN*((intLnegDIndx{j}(:,2))-1)); % scan numb
|
||||
|
||||
% ADJUSTED L for Reference Standard deviation(More conservative) Interaction List compilation
|
||||
intLadjwoRFs{j}(1,:)=intLadjcmp(Exp(expN).mutSpotIndx.woRFs,j);
|
||||
intLadjwoRFs{j}(2,:)=Exp(expN).mutSpotIndx.woRFs; % intLadjcmp(385:(mpN-1)*384,j); %intLadjcmp(Exp(expN).mutSpotIndx.woRFs,j);
|
||||
|
||||
if strcmpi(removInfinL,'Y')
|
||||
intLadjwoRFs0{j}(1,:)=intLadjwoRFs{j}(1,(intLadjwoRFs{j}(1,:)~=100)) ; %intLcmp(Exp(1).mutSpotIndx.woRFs,j);
|
||||
intLadjwoRFs0{j}(2,:)=intLadjwoRFs{j}(2,(intLadjwoRFs{j}(1,:)~=100)) ; % Remove Index where spots are infinite (=100);
|
||||
clear intLadjwoRFs
|
||||
intLadjwoRFs{j}(1,:)=intLadjwoRFs0{j}(1,:);
|
||||
intLadjwoRFs{j}(2,:)=intLadjwoRFs0{j}(2,:);
|
||||
end
|
||||
|
||||
intLwoRFsortedAdj{j}=sortrows(intLadjwoRFs{j}',1);
|
||||
clear intLadjSortGT0 intLadjSortLT0
|
||||
tempIntLadj=intLwoRFsortedAdj{j}(:,1);
|
||||
intLadjSortGT0=tempIntLadj((tempIntLadj) >=0);
|
||||
intLadjSortLT0=tempIntLadj((tempIntLadj) <0);
|
||||
centPosCntAdj=round(posPercent/100 * length(intLadjSortGT0));
|
||||
centNegCntAdj=round(negPercent/100 * length(intLadjSortLT0));
|
||||
intLposSelAdj{j}=intLwoRFsortedAdj{j}((length(intLadjSortLT0)+centPosCntAdj): end,:);
|
||||
intLnegSelAdj{j}=intLwoRFsortedAdj{j}((1:(length(intLadjSortLT0)-centNegCntAdj)),:);
|
||||
posIntboundryCentralValAdj(j)=intLadjSortGT0((centPosCntAdj),:);
|
||||
negIntboundryCentralValAdj(j)=intLadjSortLT0(((length(intLadjSortLT0))-(centNegCntAdj)),:);
|
||||
|
||||
if j==DMsel(1) % Intc1
|
||||
InterslstPosAdj{1}=intLposSelAdj{DMsel(1)}(:,2) % intLcmpposInd{Intc1}
|
||||
InterslstNegAdj{1}=intLnegSelAdj{DMsel(1)}(:,2) % intLcmpnegInd{Intc1}
|
||||
elseif sum(ismember(DMsel,j))==1 % j>Intc1 && j<=IntcLst
|
||||
InterslstPosAdj{1}=(intersect(InterslstPosAdj{1},intLposSelAdj{j}(:,2))); % ,intLcmpposInd{j}))
|
||||
InterslstNegAdj{1}=(intersect(InterslstNegAdj{1},intLnegSelAdj{j}(:,2))); % ,intLcmpnegInd{j}))
|
||||
end
|
||||
|
||||
% Convolute experiment spot index to get scan#, MP# and plateIndx needed
|
||||
% later to obtain genename and other descriptors and correlate data
|
||||
intLposDIndxAdj{j}(:,2)=ceil((intLposSelAdj{j}(:,2))/384); % mp plate numb column
|
||||
intLposDIndxAdj{j}(:,3)=(rem(intLposSelAdj{j}(:,2),384));
|
||||
nn=(intLposDIndxAdj{j}(:,3)==0);
|
||||
intLposDIndx{j}(nn,3)=384;
|
||||
intLposDIndxAdj{j}(:,1)=j + (dmN*((intLposDIndxAdj{j}(:,2))-1)); % scan numb column %intLposDIndx(:,2)* intLposDIndx(:,3);
|
||||
|
||||
intLnegDIndxAdj{j}(:,2)=ceil((intLnegSelAdj{j}(:,2))/384); % mp plate numb column
|
||||
intLnegDIndxAdj{j}(:,3)=(rem(intLnegSelAdj{j}(:,2),384));
|
||||
nn=(intLposDIndxAdj{j}(:,3)==0);
|
||||
intLnegDIndxAdj{j}(nn,3)=384;
|
||||
intLnegDIndxAdj{j}(:,1)=j + (dmN*((intLnegDIndxAdj{j}(:,2))-1)); % scan numb
|
||||
end
|
||||
|
||||
% Get interaction values for each DM drugmedia agar type
|
||||
IntersValsPos=intLcmp(InterslstPos{1},DMsel);
|
||||
IntersValsNeg=intLcmp(InterslstNeg{1},DMsel);
|
||||
IntersValsPosAdj=intLadjcmp(InterslstPosAdj{1},DMsel);
|
||||
IntersValsNegAdj=intLadjcmp(InterslstNegAdj{1},DMsel);
|
||||
|
||||
% Build 'genelist' data sheet for interactors
|
||||
selIntPx{1}(:,6)=InterslstPos{1};
|
||||
selIntPx{1}(:,2)=ceil((InterslstPos{1})/384); % mp plate numb column
|
||||
selIntPx{1}(:,3)=(rem(InterslstPos{1},384));
|
||||
nn=(selIntPx{1}(:,3)==0);
|
||||
selIntPx{1}(nn,3)=384;
|
||||
selIntPx{1}(:,4)=ceil(selIntPx{1}(:,3)/24); % row numb
|
||||
selIntPx{1}(:,5)=rem(selIntPx{1}(:,3),24);
|
||||
mm=(selIntPx{1}(:,5)==0);
|
||||
selIntPx{1}(mm,5)=24;
|
||||
selIntPx{1}(:,1)=j + (dmN*((selIntPx{1}(:,2))-1)); % scan numb column %intLposDIndx(:,2)* intLposDIndx(:,3);
|
||||
selIntP=cell2mat(selIntPx);
|
||||
selIntNx{1}(:,6)=InterslstNeg{1};
|
||||
selIntNx{1}(:,2)=ceil((InterslstNeg{1})/384); % mp plate numb column
|
||||
selIntNx{1}(:,3)=(rem(InterslstNeg{1},384));
|
||||
nn=(selIntNx{1}(:,3)==0);
|
||||
selIntNx{1}(nn,3)=384;
|
||||
selIntNx{1}(:,4)=ceil(selIntNx{1}(:,3)/24); % row numb
|
||||
selIntNx{1}(:,5)=rem(selIntNx{1}(:,3),24);
|
||||
mm=(selIntNx{1}(:,5)==0);
|
||||
selIntNx{1}(mm,5)=24;
|
||||
selIntNx{1}(:,1)=j + (dmN*((selIntNx{1}(:,2))-1)); % scan numb
|
||||
selIntN=cell2mat(selIntNx);
|
||||
|
||||
for i=1:size(selIntP,1)
|
||||
IPgene(i)=Exp(expN).MP(selIntP(i,2)).genename{1}(selIntP(i,3));
|
||||
IPorf(i)=Exp(expN).MP(selIntP(i,2)).orf{1}(selIntP(i,3));
|
||||
IPstrain(i)=Exp(expN).MP(selIntP(i,2)).strain{1}(selIntP(i,3));
|
||||
IPspecifics(i)=Exp(expN).MP(selIntP(i,2)).specifics{1}(selIntP(i,3));
|
||||
IPorfRep(i)=Exp(expN).MP(selIntP(i,2)).orfRep{1}(selIntP(i,3));
|
||||
|
||||
% Bad this is the L data for only the last selected DM perturbation
|
||||
% Would need to calculate each scan# for each DMsel value
|
||||
ipL(i)=Exp(expN).scan(selIntP(i,1)).plate(1).CFout(selIntP(i,3),5);
|
||||
ipLlower(i)=Exp(expN).scan(selIntP(i,1)).plate(1).CFout(selIntP(i,3),11);
|
||||
ipLupper(i)=Exp(expN).scan(selIntP(i,1)).plate(1).CFout(selIntP(i,3),12);
|
||||
end
|
||||
|
||||
for i=1:size(selIntN,1)
|
||||
INgene(i)=Exp(expN).MP(selIntN(i,2)).genename{1}(selIntN(i,3));
|
||||
INorf(i)=Exp(expN).MP(selIntN(i,2)).orf{1}(selIntN(i,3));
|
||||
INstrain(i)=Exp(expN).MP(selIntN(i,2)).strain{1}(selIntN(i,3));
|
||||
INspecifics(i)=Exp(expN).MP(selIntN(i,2)).specifics{1}(selIntN(i,3));
|
||||
INorfRep(i)=Exp(expN).MP(selIntN(i,2)).orfRep{1}(selIntN(i,3));
|
||||
|
||||
% Bad this is the L data for only the last selected DM perturbation
|
||||
% Would need to calculate each scan# for each DMsel value
|
||||
inL(i)=Exp(expN).scan(selIntN(i,1)).plate(1).CFout(selIntN(i,3),5);
|
||||
inLlower(i)=Exp(expN).scan(selIntN(i,1)).plate(1).CFout(selIntN(i,3),11);
|
||||
inLupper(i)=Exp(expN).scan(selIntN(i,1)).plate(1).CFout(selIntN(i,3),12);
|
||||
end
|
||||
|
||||
% ADJUSTED with STD and curve fit boundaries to produce more conservative interaction values
|
||||
% Build 'genelist' data sheet for interactors
|
||||
selIntPxAdj{1}(:,2)=ceil((InterslstPosAdj{1})/384); %mp plate numb column
|
||||
selIntPxAdj{1}(:,3)=(rem(InterslstPosAdj{1},384));
|
||||
nn=(selIntPxAdj{1}(:,3)==0);
|
||||
selIntPxAdj{1}(nn,3)=384;
|
||||
selIntPxAdj{1}(:,4)=ceil(selIntPxAdj{1}(:,3)/24); %row numb
|
||||
selIntPxAdj{1}(:,5)=rem(selIntPxAdj{1}(:,3),24);
|
||||
mm=(selIntPxAdj{1}(:,5)==0);
|
||||
selIntPxAdj{1}(mm,5)=24;
|
||||
selIntPxAdj{1}(:,1)=j + (dmN*((selIntPxAdj{1}(:,2))-1)); %scan numb column %intLposDIndx(:,2)* intLposDIndx(:,3);
|
||||
selIntPAdj=cell2mat(selIntPxAdj);
|
||||
selIntNxAdj{1}(:,2)=ceil((InterslstNegAdj{1})/384); %mp plate numb column
|
||||
selIntNxAdj{1}(:,3)=(rem(InterslstNegAdj{1},384));
|
||||
nn=(selIntNxAdj{1}(:,3)==0);
|
||||
selIntNxAdj{1}(nn,3)=384;
|
||||
selIntNxAdj{1}(:,4)=ceil(selIntNxAdj{1}(:,3)/24); %row numb
|
||||
selIntNxAdj{1}(:,5)=rem(selIntNxAdj{1}(:,3),24);
|
||||
mm=(selIntNxAdj{1}(:,5)==0);
|
||||
selIntNxAdj{1}(mm,5)=24;
|
||||
selIntNxAdj{1}(:,1)=j + (dmN*((selIntNxAdj{1}(:,2))-1)); %scan numb
|
||||
selIntNAdj=cell2mat(selIntNxAdj);
|
||||
|
||||
for i=1:size(selIntPAdj,1)
|
||||
IPgeneAdj(i)=Exp(expN).MP(selIntPAdj(i,2)).genename{1}(selIntPAdj(i,3));
|
||||
IPorfAdj(i)=Exp(expN).MP(selIntPAdj(i,2)).orf{1}(selIntPAdj(i,3));
|
||||
IPstrainAdj(i)=Exp(expN).MP(selIntPAdj(i,2)).strain{1}(selIntPAdj(i,3));
|
||||
IPspecificsAdj(i)=Exp(expN).MP(selIntPAdj(i,2)).specifics{1}(selIntPAdj(i,3));
|
||||
IPorfRepAdj(i)=Exp(expN).MP(selIntPAdj(i,2)).orfRep{1}(selIntPAdj(i,3));
|
||||
% Bad this is the L data for only the last selected DM perturbation
|
||||
% Would need to calculate each scan# for each DMsel value
|
||||
ipLAdj(i)=Exp(expN).scan(selIntPAdj(i,1)).plate(1).CFout(selIntPAdj(i,3),5);
|
||||
ipLlowerAdj(i)=Exp(expN).scan(selIntPAdj(i,1)).plate(1).CFout(selIntPAdj(i,3),11);
|
||||
ipLupperAdj(i)=Exp(expN).scan(selIntPAdj(i,1)).plate(1).CFout(selIntPAdj(i,3),12);
|
||||
end
|
||||
|
||||
for i=1:size(selIntNAdj,1)
|
||||
INgeneAdj(i)=Exp(expN).MP(selIntNAdj(i,2)).genename{1}(selIntNAdj(i,3));
|
||||
INorfAdj(i)=Exp(expN).MP(selIntNAdj(i,2)).orf{1}(selIntNAdj(i,3));
|
||||
INstrainAdj(i)=Exp(expN).MP(selIntNAdj(i,2)).strain{1}(selIntNAdj(i,3));
|
||||
INspecificsAdj(i)=Exp(expN).MP(selIntNAdj(i,2)).specifics{1}(selIntNAdj(i,3));
|
||||
INorfRepAdj(i)=Exp(expN).MP(selIntNAdj(i,2)).orfRep{1}(selIntNAdj(i,3));
|
||||
%Bad this is the L data for only the last selected DM perturbation
|
||||
%Would need to calculate each scan# for each DMsel value
|
||||
inLAdj(i)=Exp(expN).scan(selIntNAdj(i,1)).plate(1).CFout(selIntNAdj(i,3),5);
|
||||
inLlowerAdj(i)=Exp(expN).scan(selIntNAdj(i,1)).plate(1).CFout(selIntNAdj(i,3),11);
|
||||
inLupperAdj(i)=Exp(expN).scan(selIntNAdj(i,1)).plate(1).CFout(selIntNAdj(i,3),12);
|
||||
end
|
||||
|
||||
|
||||
% Plot Histogram
|
||||
% subplotX=1;
|
||||
figure
|
||||
if strcmpi(subplotX,'Y')
|
||||
for j=1:dmN
|
||||
histLdata=intLwoRFsorted{j}(:,1); % intLcmp(385:(mpN-1)*384,j);
|
||||
% histLadjData=intLadjcmp(385:(mpN-1)*384,j);
|
||||
hgLdat{j}=histfitJR(histLdata,numBins,'kernel');
|
||||
x{j}=get(hgLdat{j}(2),'xdata');
|
||||
y{j}=get(hgLdat{j}(2),'ydata');
|
||||
xb{j}=get(hgLdat{j}(1),'xdata');
|
||||
yb{j}=get(hgLdat{j}(1),'ydata');
|
||||
ybpostot{j}=sum(yb{j}(2,(xb{j}(1,:)>=0)));
|
||||
ybnegtot{j}=sum(yb{j}(2,(xb{j}(1,:) <0)));
|
||||
xbb(j,:)=xb{j}(2,:);
|
||||
ybb(j,:)=yb{j}(2,:);
|
||||
clf
|
||||
end
|
||||
|
||||
% Figure
|
||||
for j=1:dmN
|
||||
histLdata=intLwoRFsorted{j}(:,1); % intLcmp(385:(mpN-1)*384,j);
|
||||
hgL{j}=subplot(2, 4, j), histfitJR(histLdata,numBins,'kernel') ; hold %hgL{j}=histfit(intLcmp(:,j),31,'kernel')
|
||||
subplot(2, 4, j),plot(posIntboundryCentralVal(j), 1:3000,'--r')
|
||||
subplot(2, 4, j),plot(negIntboundryCentralVal(j), 1:3000,'--g')
|
||||
hold off
|
||||
end
|
||||
scnsize=get(0,'screensize')
|
||||
pos1=[round(scnsize(3)/40), round(scnsize(4)/2 +(scnsize(3)/80)),...
|
||||
round(scnsize(3) -round(scnsize(3)/80)),round(scnsize(4)/2 -round(scnsize(4)/80))]
|
||||
set(gcf,'outerposition',pos1)
|
||||
set(gcf,'Name', 'Interaction Values ');
|
||||
|
||||
figure
|
||||
for j=1:dmN
|
||||
histLadjData=intLwoRFsortedAdj{j}(:,1); %intLadjcmp(385:(mpN-1)*384,j);
|
||||
hgLadj{j}=subplot(2, 4, j),histfitJR(histLadjData,numBins,'kernel') ; hold %hgLadj{j}=histfit(intLadjcmp(:,j),31,'kernel')
|
||||
subplot(2, 4, j),plot(posIntboundryCentralValAdj(j), 1:3000,'--r')
|
||||
subplot(2, 4, j),plot(negIntboundryCentralValAdj(j), 1:3000,'--g')
|
||||
hold off
|
||||
end
|
||||
pos2=[round(scnsize(3)/40), round(scnsize(4)/30),...
|
||||
round(scnsize(3) -scnsize(3)/80),round(scnsize(4)/2 -scnsize(4)/80)]
|
||||
set(gcf,'outerposition',pos2)
|
||||
set(gcf,'Name', 'Interaction Compensated by Standard Deviation and Upper/Lower Curvefit boundaries')
|
||||
elseif strcmpi(subplotX,'N')
|
||||
for j=1:dmN
|
||||
histLdata=intLwoRFsorted{j}(:,1); %intLcmp(385:(mpN-1)*384,j);
|
||||
histLadjData=intLwoRFsortedAdj{j}(:,1); %intLadjcmp(385:(mpN-1)*384,j);%intLadjcmp(385:(mpN-1)*384,j); %intLcmp(:,j); %intLadjcmp(:,j);
|
||||
figure
|
||||
hgL{j}=histfitJR(histLdata,numBins,'kernel') ; hold %hgL{j}=histfit(intLcmp(:,j),31,'kernel')
|
||||
plot(posIntboundryCentralVal(j), 1:3000,'--r')
|
||||
plot(negIntboundryCentralVal(j), 1:3000,'--g')
|
||||
hold off
|
||||
figure
|
||||
hgLadj{j}=histfitJR(histLadjData,numBins,'kernel') ; hold %hgLadj{j}=histfit(intLadjcmp(:,j),31,'kernel')
|
||||
plot(posIntboundryCentralValAdj(j), 1:3000,'--r')
|
||||
plot(negIntboundryCentralValAdj(j), 1:3000,'--g')
|
||||
hold off
|
||||
x{j}=get(hgL{j}(2),'xdata')
|
||||
y{j}=get(hgL{j}(2),'ydata');
|
||||
xb{j}=get(hgL{j}(1),'xdata')
|
||||
yb{j}=get(hgL{j}(1),'ydata')
|
||||
ybpostot{j}=sum(yb{j}(2,(xb{j}(1,:)>=0)))
|
||||
ybnegtot{j}=sum(yb{j}(2,(xb{j}(1,:) <0)))
|
||||
xbb(j,:)=xb{j}(2,:);
|
||||
ybb(j,:)=yb{j}(2,:);
|
||||
end
|
||||
if strcmpi(subplotX,'N')
|
||||
figure
|
||||
bar3(ybb);
|
||||
% xxbb=yb{1}(2,:);
|
||||
% figure
|
||||
end
|
||||
else
|
||||
end
|
||||
% histograms placed in subplot figure else multiple histogram plots
|
||||
|
||||
if strcmpi(subplotX,'Y')
|
||||
figure
|
||||
bar3(ybb);
|
||||
set(gcf,'Name', 'Unfiltered Interaction Histogram for all DrugMedias; NoGrowth Interactors set to 100hr (highest bin)')
|
||||
%xxbb=yb{1}(2,:);
|
||||
%figure
|
||||
end
|
||||
|
||||
EZintPrint
|
||||
a=1 % TODO what is this for
|
||||
end
|
||||
Reference in New Issue
Block a user