Squashed initial commit

This commit is contained in:
2024-09-10 13:47:29 -04:00
commit 8ebb6ad265
6221 changed files with 2512206 additions and 0 deletions

View File

@@ -0,0 +1,196 @@
#!/usr/bin/env R
# GTA (GoTermAveraging)
# Your output may not be reproducible as org.Sc.sgd.db is uploaded from Bioconductor R library and changes
#
# Updated 240724 Bryan C Roessler to improve file operations and portability
# NOTE: The script now has 2 additional OPTIONAL arguments:
# 1. Path to SGD terms file (go.terms.tab)
# 2. Path to SGD features file (gene_association.sgd)
library("stringr")
library("org.Sc.sgd.db")
library("plyr")
# Parse arguments
args <- commandArgs(TRUE)
exp_name <- args[1]
if (length(args) >= 2) {
zscores_file <- args[2]
} else {
zscores_file <- "zscores/zscores_interaction.csv" # https://downloads.yeastgenome.org/curation/chromosomal_feature/gene_association.sgd
}
if (length(args) >= 3) {
sgd_terms_file <- args[3]
} else {
sgd_terms_file <- "go_terms.tab"
}
if (length(args) >= 4) {
sgd_features_file <- args[4]
} else {
sgd_features_file <- "gene_association.sgd" # https://downloads.yeastgenome.org/curation/chromosomal_feature/gene_association.sgd
}
if (length(args) >= 5) {
output_dir <- args[5]
} else {
output_dir <- "../../out/gta" # https://downloads.yeastgenome.org/curation/chromosomal_feature/gene_association.sgd
}
# # Set SGDgeneList file path
# if (length(args) > 4) {
# SGDgeneList <- args[4]
# } else {
# SGDgeneList <- "../Code/SGD_features.tab"
# Begin for loop for experiments in this study
# ZScores_Interaction.csv
for (m in 1:length(zscores_file)) {
# zscores_file <- paste(Wstudy,"/",expName[m],'/ZScores/ZScores_Interaction.csv',sep="") #ArgsScore[1]
X <- read.csv(file = zscores_file[m], stringsAsFactors = FALSE, header = TRUE)
if (colnames(X)[1] == "OrfRep") {
colnames(X)[1] <- "ORF"
}
#Terms is the GO term list
Terms <- read.delim(file = sgd_terms_file, header = FALSE, quote = "",
col.names = c("GO_ID", "GO_Term", "GO_Aspect", "GO_Term_Definition"))
#all ORFs associated with GO term
GO2ALLORFs <- as.list(org.Sc.sgdGO2ALLORFS)
#Gene_Association is the gene association to GO term file
Gene_Association <- read.delim(sgd_features_file, skip = 8, header = FALSE, quote = "",
col.names = c("Database", "Database_Object_ID", "Database_Object_Symbol", "NOT", "GO_ID",
"Database_Reference", "Evidence", "With_or_From", "Aspect", "Database_Object_Name",
"Database_Object_Synonym", "Database_Object_Type", "taxon", "Date", "Assigned_By", "OtherInfo", "Empty"
)
)
#Get the ORF names associated with each gene/GO term
Gene_Association$ORF <- str_split_fixed(as.character(Gene_Association$Database_Object_Synonym), "\\|", 2)[, 1]
#Get the numeric GO ID for matching
Gene_Association$GO_ID_Numeric <- as.integer(str_split_fixed(as.character(Gene_Association$GO_ID), "\\:", 2)[, 2])
#Get all unique GO terms
GO_Terms <- unique(Gene_Association$GO_ID)
#Create a character vector with just the ColNames of the input file to store the scores for each GO term
Col_Names_X <- colnames(X)
#Create a data_frame with header from input_file
GO_Term_Averages <- X[0, ]
#Fill table with NAs same length as number of GO terms
GO_Term_Averages[1:length(GO_Terms), ] <- NA
#Change the first and second col names to GO_ID and Term
colnames(GO_Term_Averages)[1] <- "GO_ID"
colnames(GO_Term_Averages)[2] <- "Term"
# Create new columns
GO_Term_Averages$Ontology <- NA
GO_Term_Averages$NumGenes <- NA
GO_Term_Averages$AllPossibleGenes <- NA
GO_Term_Averages$Genes <- NA
GO_Term_Averages$ORFs <- NA
# Create a data.frame for the standard deviation info
GO_Term_SD <- X[0, ]
GO_Term_SD[1:length(GO_Terms), ] <- NA
colnames(GO_Term_SD)[1] <- "GO_ID"
colnames(GO_Term_SD)[2] <- "Term"
# Loop for each GO term to get an average L and K Z score
for (i in 1:length(GO_Terms)) {
# Get the GO_Term
ID <- GO_Terms[i]
# Get data.frame for all genes associated to the GO Term
ID_AllGenes <- Gene_Association[Gene_Association$GO_ID == ID, ]
# Get a vector of just the gene names
ID_AllGenes_vector <- as.vector(GO2ALLORFs[as.character(ID)][[1]])
if (length(unique(ID_AllGenes_vector)) > 4000) {
next()
}
# Get the GO term character description where numeric Terms ID matches GO_Term's ID
GO_Description_Term <- as.character(Terms[Terms$GO_ID %in% ID_AllGenes$GO_ID_Numeric, ]$GO_Term[1])
# Get the Z scores for all genes in the GO_ID
Zscores_For_ID <- X[X$ORF %in% ID_AllGenes_vector, ]
# Get the Gene names and ORFs for the term
GO_Term_Averages$Genes[i] <- paste(unique(Zscores_For_ID$Gene), collapse = " | ")
GO_Term_Averages$ORFs[i] <- paste(unique(Zscores_For_ID$ORF), collapse = " | ")
# Dataframe to report the averages for a GO term
# Get the GO ID
GO_Term_Averages$GO_ID[i] <- as.character(ID)
# Get the term name
GO_Term_Averages$Term[i] <- GO_Description_Term
# Get total number of genes annotated to the Term that we have in our library
GO_Term_Averages$NumGenes[i] <- length(unique(Zscores_For_ID$ORF))
# Get total number of genes annotated to the Term in SGD
GO_Term_Averages$AllPossibleGenes[i] <- length(unique(ID_AllGenes_vector))
# Get the ontology of the term
GO_Term_Averages$Ontology[i] <- as.character(ID_AllGenes$Aspect[1])
# Calculate the average score for every column
for (j in 3:length(X[1, ])) {
GO_Term_Averages[i, j] <- mean(Zscores_For_ID[, j], na.rm = TRUE)
# GO_Scores <- colMeans(Zscores_For_ID[,3:length(X[1,])])
}
# Also calculate same values for the SD
GO_Term_SD$GO_ID[i] <- as.character(ID)
# Get the term name
GO_Term_SD$Term[i] <- GO_Description_Term
# Calculate column scores for SD
for (j in 3:length(X[1, ])) {
GO_Term_SD[i, j] <- sd(Zscores_For_ID[, j], na.rm = TRUE)
# GO_Scores <- colMeans(Zscores_For_ID[,3:length(X[1,])])
}
}
# Add either _Avg or _SD depending on if the calculated score is an average or SD
colnames(GO_Term_Averages) <- paste(colnames(GO_Term_Averages), "Avg", sep = "_")
colnames(GO_Term_SD) <- paste(colnames(GO_Term_SD), "SD", sep = "_")
# Combine the averages with the SDs to make one big data.frame
X2 <- cbind(GO_Term_Averages, GO_Term_SD)
# Test[ , order(names(test))]
X2 <- X2[, order(names(X2))]
X2 <- X2[!is.na(X2$Z_lm_L_Avg), ]
# Create output file
write.csv(X2, file.path(output_dir, expName[m], "Average_GOTerms_All.csv"), row.names = FALSE)
# Remove NAs
X3 <- X2[!is.na(X2$Z_lm_L_Avg), ]
# Identify redundant GO terms
for (i in 1:length(X3[, 1])) {
# Loop through each GO term - get term
GO_term_ID <- as.character(X3$GO_ID_Avg[i])
# Get term in the X3
X3_Temp <- X3[X3$GO_ID_Avg == GO_term_ID, ]
# Get anywhere that has the same number K_Avg value
X3_Temp2 <- X3[X3$Z_lm_K_Avg %in% X3_Temp, ]
if (length(X3_Temp2[, 1]) > 1) {
if (length(unique(X3_Temp2$Genes_Avg)) == 1) {
X3_Temp2 <- X3_Temp2[1, ]
}
}
if (i == 1) {
Y <- X3_Temp2
}
if (i > 1) {
Y <- rbind(Y, X3_Temp2)
}
}
Y1 <- unique(Y)
write.csv(Y1, file.path(output_dir, exp_name, "Average_GOTerms_All_NonRedundantTerms.csv"), row.names = FALSE)
Y2 <- Y1[Y1$Z_lm_L_Avg >= 2 | Y1$Z_lm_L_Avg <= -2, ]
Y2 <- Y2[!is.na(Y2$Z_lm_L_Avg), ]
write.csv(Y2, file.path(output_dir, exp_name, "Average_GOTerms_NonRedundantTerms_Above2SD_L.csv"), row.names = FALSE)
Y3 <- Y2[Y2$NumGenes_Avg > 2, ]
write.csv(Y3, file.path(output_dir, exp_name, "Average_GOTerms_NonRedundantTerms_Above2SD_L_Above2Genes.csv"), row.names = FALSE)
Y4 <- Y1[Y1$Z_lm_K_Avg >= 2 | Y1$Z_lm_K_Avg <= -2, ]
Y4 <- Y4[!is.na(Y4$Z_lm_K_Avg), ]
write.csv(Y4, file.path(output_dir, exp_name, "Average_GOTerms_NonRedundantTerms_Above2SD_K.csv"), row.names = FALSE)
Y5 <- Y4[Y4$NumGenes_Avg > 2, ]
write.csv(Y5, file.path(output_dir, exp_name, "Average_GOTerms_NonRedundantTerms_Above2SD_K_Above2Genes.csv"), row.names = FALSE)
}