Generate correlation lms separately

This commit is contained in:
2024-10-02 00:43:46 -04:00
parent 462d6070bd
commit b0a41ac181

View File

@@ -184,7 +184,6 @@ update_gene_names <- function(df, sgd_gene_list) {
}
calculate_summary_stats <- function(df, variables, group_vars) {
summary_stats <- df %>%
group_by(across(all_of(group_vars))) %>%
summarise(
@@ -212,12 +211,12 @@ calculate_summary_stats <- function(df, variables, group_vars) {
return(list(summary_stats = summary_stats, df_with_stats = df_joined))
}
calculate_interaction_scores <- function(df, max_conc, bg_stats,
group_vars = c("OrfRep", "Gene", "num")) {
calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
# Calculate total concentration variables
total_conc_num <- length(unique(df$conc_num))
# Initial calculations
calculations <- df %>%
group_by(across(all_of(group_vars))) %>%
mutate(
@@ -231,14 +230,18 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats,
Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
# Expected values
Exp_L = WT_L + Raw_Shift_L,
Exp_K = WT_K + Raw_Shift_K,
Exp_r = WT_r + Raw_Shift_r,
Exp_AUC = WT_AUC + Raw_Shift_AUC,
# Deltas
Delta_L = mean_L - Exp_L,
Delta_K = mean_K - Exp_K,
Delta_r = mean_r - Exp_r,
@@ -253,13 +256,18 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats,
Zscore_L = Delta_L / WT_sd_L,
Zscore_K = Delta_K / WT_sd_K,
Zscore_r = Delta_r / WT_sd_r,
Zscore_AUC = Delta_AUC / WT_sd_AUC,
Zscore_AUC = Delta_AUC / WT_sd_AUC
)
# Fit linear models and store in list-columns
gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
# Fit linear models per group
lm_results <- calculations %>%
nest() %>%
mutate(
# Fit linear models
gene_lm_L = map(data, ~ lm(Delta_L ~ conc_num_factor, data = .x)),
gene_lm_K = map(data, ~ lm(Delta_K ~ conc_num_factor, data = .x)),
gene_lm_r = map(data, ~ lm(Delta_r ~ conc_num_factor, data = .x)),
gene_lm_AUC = map(data, ~ lm(Delta_AUC ~ conc_num_factor, data = .x)),
# Extract coefficients using purrr::map_dbl
lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
@@ -271,128 +279,151 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats,
lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
# Calculate R-squared values for Delta_ models
R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared),
# Calculate lm_Score_* based on coefficients
lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
# Calculate R-squared values
R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
) %>%
select(-data, -starts_with("gene_lm_")) %>%
ungroup()
# Merge lm_results back into calculations
calculations <- calculations %>%
left_join(lm_results, by = group_vars)
# Calculate overall mean and SD for lm_Score_* variables
lm_means_sds <- calculations %>%
gene_lm_means <- lm_results %>%
summarise(
lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
L = mean(lm_Score_L, na.rm = TRUE),
K = mean(lm_Score_K, na.rm = TRUE),
r = mean(lm_Score_r, na.rm = TRUE),
AUC = mean(lm_Score_AUC, na.rm = TRUE)
)
gene_lm_sds <- lm_results %>%
summarise(
L = sd(lm_Score_L, na.rm = TRUE),
K = sd(lm_Score_K, na.rm = TRUE),
r = sd(lm_Score_r, na.rm = TRUE),
AUC = sd(lm_Score_AUC, na.rm = TRUE)
)
# Calculate gene Z-scores
calculations <- calculations %>%
mutate(
Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
Z_lm_L = (lm_Score_L - gene_lm_means$L) / gene_lm_sds$L,
Z_lm_K = (lm_Score_K - gene_lm_means$K) / gene_lm_sds$K,
Z_lm_r = (lm_Score_r - gene_lm_means$r) / gene_lm_sds$r,
Z_lm_AUC = (lm_Score_AUC - gene_lm_means$AUC) / gene_lm_sds$AUC
)
# Summarize some of the stats
# Build summary stats (interactions)
interactions <- calculations %>%
group_by(across(all_of(group_vars))) %>%
mutate(
# Calculate raw shifts
summarise(
# Calculate average Z-scores
Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
# Interaction Z-scores
Z_lm_L = first(Z_lm_L),
Z_lm_K = first(Z_lm_K),
Z_lm_r = first(Z_lm_r),
Z_lm_AUC = first(Z_lm_AUC),
# Raw Shifts
Raw_Shift_L = first(Raw_Shift_L),
Raw_Shift_K = first(Raw_Shift_K),
Raw_Shift_r = first(Raw_Shift_r),
Raw_Shift_AUC = first(Raw_Shift_AUC),
# Calculate Z-shifts
# Z Shifts
Z_Shift_L = first(Z_Shift_L),
Z_Shift_K = first(Z_Shift_K),
Z_Shift_r = first(Z_Shift_r),
Z_Shift_AUC = first(Z_Shift_AUC),
# Sum Z-scores
Sum_Z_Score_L = sum(Zscore_L),
Sum_Z_Score_K = sum(Zscore_K),
Sum_Z_Score_r = sum(Zscore_r),
Sum_Z_Score_AUC = sum(Zscore_AUC),
# Calculate Average Z-scores
Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
# Include NG, DB, SM
NG = first(NG),
DB = first(DB),
SM = first(SM)
) %>%
arrange(desc(Z_lm_L), desc(NG)) %>%
ungroup()
# Declare column order for output
calculations <- calculations %>%
select(
"OrfRep", "Gene", "num", "N",
"conc_num", "conc_num_factor", "conc_num_factor_factor",
"mean_L", "mean_K", "mean_r", "mean_AUC",
"median_L", "median_K", "median_r", "median_AUC",
"sd_L", "sd_K", "sd_r", "sd_AUC",
"se_L", "se_K", "se_r", "se_AUC",
"Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
"Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
"WT_L", "WT_K", "WT_r", "WT_AUC",
"WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
"Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
"Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
"Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
"NG", "SM", "DB"
)
# Calculate overlap
interactions <- interactions %>%
select(
"OrfRep", "Gene", "num", "NG", "DB", "SM",
"conc_num", "conc_num_factor", "conc_num_factor_factor",
"Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
"Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
"Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
"Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
"lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
"R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
"Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
mutate(
Overlap = case_when(
Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
Z_lm_L >= overlap_threshold & Avg_Zscore_L < overlap_threshold ~ "Deletion Enhancer lm only",
Z_lm_L < overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
Z_lm_L <= -overlap_threshold & Avg_Zscore_L > -overlap_threshold ~ "Deletion Suppressor lm only",
Z_lm_L > -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
TRUE ~ "No Effect"
)
)
# Clean the original dataframe by removing overlapping columns
cleaned_df <- df %>%
select(-any_of(
setdiff(intersect(names(df), names(calculations)),
c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
# Fit correlation models between Z_lm_* and Avg_Zscore_* (same-variable)
correlation_lms_same <- list(
L = lm(Z_lm_L ~ Avg_Zscore_L, data = interactions),
K = lm(Z_lm_K ~ Avg_Zscore_K, data = interactions),
r = lm(Z_lm_r ~ Avg_Zscore_r, data = interactions),
AUC = lm(Z_lm_AUC ~ Avg_Zscore_AUC, data = interactions)
)
# Join the original dataframe with calculations
df_with_calculations <- left_join(cleaned_df, calculations,
by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
# Extract correlation statistics for same-variable correlations
correlation_stats_same <- map(correlation_lms_same, ~ {
list(
intercept = coef(.x)[1],
slope = coef(.x)[2],
r_squared = summary(.x)$r.squared
)
})
# Remove overlapping columns between df_with_calculations and interactions
df_with_calculations_clean <- df_with_calculations %>%
select(-any_of(
setdiff(intersect(names(df_with_calculations), names(interactions)),
c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
# Fit additional correlation models between different Z_lm_* variables
correlation_lms_diff <- list(
L_vs_K = lm(Z_lm_K ~ Z_lm_L, data = interactions),
L_vs_r = lm(Z_lm_r ~ Z_lm_L, data = interactions),
L_vs_AUC = lm(Z_lm_AUC ~ Z_lm_L, data = interactions),
K_vs_r = lm(Z_lm_r ~ Z_lm_K, data = interactions),
K_vs_AUC = lm(Z_lm_AUC ~ Z_lm_K, data = interactions),
r_vs_AUC = lm(Z_lm_AUC ~ Z_lm_r, data = interactions)
)
# Join with interactions to create the full dataset
full_data <- left_join(df_with_calculations_clean, interactions,
by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
# Extract correlation statistics for different-variable correlations
correlation_stats_diff <- map(correlation_lms_diff, ~ {
list(
intercept = coef(.x)[1],
slope = coef(.x)[2],
r_squared = summary(.x)$r.squared
)
})
# Combine all correlation stats
correlation_stats <- c(correlation_stats_same, correlation_stats_diff)
# Prepare full_data by merging interactions back into calculations
full_data <- calculations %>%
left_join(interactions, by = group_vars)
return(list(
calculations = calculations,
interactions = interactions,
full_data = full_data
full_data = full_data,
correlation_stats = correlation_stats
))
}
@@ -577,32 +608,11 @@ generate_scatter_plot <- function(plot, config) {
# Add error bars if specified
if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
if (!is.null(config$error_bar_params)) {
# Error bar params are constants, so set them outside aes
plot <- plot +
geom_errorbar(
aes(
ymin = !!sym(config$y_var), # y_var mapped to y-axis
ymax = !!sym(config$y_var)
),
ymin = config$error_bar_params$ymin, # Constant values
ymax = config$error_bar_params$ymax, # Constant values
alpha = 0.3,
linewidth = 0.5
)
plot <- plot + geom_errorbar(aes(ymin = config$error_bar_params$ymin, ymax = config$error_bar_params$ymax))
} else {
# Dynamically generate ymin and ymax based on column names
y_mean_col <- paste0("mean_", config$y_var)
y_sd_col <- paste0("sd_", config$y_var)
plot <- plot +
geom_errorbar(
aes(
ymin = !!sym(y_mean_col) - !!sym(y_sd_col), # Calculating ymin in aes
ymax = !!sym(y_mean_col) + !!sym(y_sd_col) # Calculating ymax in aes
),
alpha = 0.3,
linewidth = 0.5
)
plot <- plot + geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col), ymax = !!sym(y_mean_col) + !!sym(y_sd_col)))
}
}
@@ -711,7 +721,18 @@ generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df
return(list(plots = plot_configs))
}
generate_interaction_plot_configs <- function(df, plot_type = "reference") {
generate_interaction_plot_configs <- function(df, type) {
if (type == "reference") {
group_vars <- c("OrfRep", "Gene", "num")
df <- df %>%
mutate(OrfRepCombined = do.call(paste, c(across(all_of(group_vars)), sep = "_")))
} else if (type == "deletion") {
group_vars <- c("OrfRep", "Gene")
df <- df %>%
mutate(OrfRepCombined = OrfRep)
}
limits_map <- list(
L = c(0, 130),
K = c(-20, 160),
@@ -720,47 +741,50 @@ generate_interaction_plot_configs <- function(df, plot_type = "reference") {
)
delta_limits_map <- list(
Delta_L = c(-60, 60),
Delta_K = c(-60, 60),
Delta_r = c(-0.6, 0.6),
Delta_AUC = c(-6000, 6000)
L = c(-60, 60),
K = c(-60, 60),
r = c(-0.6, 0.6),
AUC = c(-6000, 6000)
)
group_vars <- if (plot_type == "reference") c("OrfRep", "Gene", "num") else c("OrfRep", "Gene")
df_filtered <- df %>%
mutate(OrfRepCombined = if (plot_type == "reference") paste(OrfRep, Gene, num, sep = "_") else paste(OrfRep, Gene, sep = "_"))
overall_plot_configs <- list()
delta_plot_configs <- list()
# Overall plots
# Overall plots with lm_line for each interaction
for (var in names(limits_map)) {
y_limits <- limits_map[[var]]
# Use the pre-calculated lm intercept and slope from the dataframe
lm_intercept_col <- paste0("lm_intercept_", var)
lm_slope_col <- paste0("lm_slope_", var)
plot_config <- list(
df = df_filtered,
df = df,
plot_type = "scatter",
x_var = "conc_num_factor_factor",
y_var = var,
x_label = unique(df_filtered$Drug)[1],
x_label = unique(df$Drug)[1],
title = sprintf("Scatter RF for %s with SD", var),
coord_cartesian = y_limits,
error_bar = TRUE,
x_breaks = unique(df_filtered$conc_num_factor_factor),
x_labels = as.character(unique(df_filtered$conc_num)),
x_breaks = unique(df$conc_num_factor_factor),
x_labels = as.character(unique(df$conc_num)),
position = "jitter",
smooth = TRUE
smooth = TRUE,
lm_line = list(
intercept = mean(df[[lm_intercept_col]], na.rm = TRUE),
slope = mean(df[[lm_slope_col]], na.rm = TRUE)
)
)
overall_plot_configs <- append(overall_plot_configs, list(plot_config))
}
# Delta plots
unique_groups <- df_filtered %>% select(all_of(group_vars)) %>% distinct()
# Delta plots (add lm_line if necessary)
unique_groups <- df %>% select(all_of(group_vars)) %>% distinct()
for (i in seq_len(nrow(unique_groups))) {
group <- unique_groups[i, ]
group_data <- df_filtered %>% semi_join(group, by = group_vars)
group_data <- df %>% semi_join(group, by = group_vars)
OrfRep <- as.character(group$OrfRep)
Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
@@ -770,13 +794,12 @@ generate_interaction_plot_configs <- function(df, plot_type = "reference") {
y_limits <- delta_limits_map[[var]]
y_span <- y_limits[2] - y_limits[1]
WT_sd_var <- paste0("WT_sd_", sub("Delta_", "", var))
WT_sd_value <- group_data[[WT_sd_var]][1]
error_bar_ymin <- 0 - (2 * WT_sd_value)
error_bar_ymax <- 0 + (2 * WT_sd_value)
# For error bars
WT_sd_value <- group_data[[paste0("WT_sd_", var)]][1]
Z_Shift_value <- round(group_data[[paste0("Z_Shift_", sub("Delta_", "", var))]][1], 2)
Z_lm_value <- round(group_data[[paste0("Z_lm_", sub("Delta_", "", var))]][1], 2)
Z_Shift_value <- round(group_data[[paste0("Z_Shift_", var)]][1], 2)
Z_lm_value <- round(group_data[[paste0("Z_lm_", var)]][1], 2)
R_squared_value <- round(group_data[[paste0("R_squared_", var)]][1], 2)
NG_value <- group_data$NG[1]
DB_value <- group_data$DB[1]
SM_value <- group_data$SM[1]
@@ -784,37 +807,48 @@ generate_interaction_plot_configs <- function(df, plot_type = "reference") {
annotations <- list(
list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
)
# Delta plot configuration with lm_line if needed
plot_config <- list(
df = group_data,
plot_type = "scatter",
x_var = "conc_num_factor_factor",
y_var = var,
x_label = unique(group_data$Drug)[1],
title = paste(OrfRep, Gene, sep = " "),
title = paste(OrfRepCombined, Gene, sep = " "),
coord_cartesian = y_limits,
annotations = annotations,
error_bar = TRUE,
error_bar_params = list(
ymin = error_bar_ymin,
ymax = error_bar_ymax
ymin = 0 - (2 * WT_sd_value),
ymax = 0 + (2 * WT_sd_value)
),
smooth = TRUE,
x_breaks = unique(group_data$conc_num_factor_factor),
x_labels = as.character(unique(group_data$conc_num)),
ylim_vals = y_limits
ylim_vals = y_limits,
lm_line = list(
intercept = group_data[[lm_intercept_col]][1],
slope = group_data[[lm_slope_col]][1]
)
)
delta_plot_configs <- append(delta_plot_configs, list(plot_config))
}
}
# Calculate dynamic grid layout based on the number of plots for the delta_L plots
grid_ncol <- 4
num_plots <- length(delta_plot_configs)
grid_nrow <- ceiling(num_plots / grid_ncol)
return(list(
list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
list(grid_layout = list(ncol = 4, nrow = 3), plots = delta_plot_configs)
list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
))
}
@@ -902,45 +936,67 @@ generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FA
return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
}
generate_correlation_plot_configs <- function(df, highlight_cyan = FALSE) {
generate_correlation_plot_configs <- function(df, correlation_stats) {
# Define relationships for different-variable correlations
relationships <- list(
list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
list(x = "L", y = "K"),
list(x = "L", y = "r"),
list(x = "L", y = "AUC"),
list(x = "K", y = "r"),
list(x = "K", y = "AUC"),
list(x = "r", y = "AUC")
)
plot_configs <- list()
for (rel in relationships) {
lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
r_squared <- summary(lm_model)$r.squared
# Iterate over the option to highlight cyan points (TRUE/FALSE)
highlight_cyan_options <- c(FALSE, TRUE)
for (highlight_cyan in highlight_cyan_options) {
for (rel in relationships) {
# Extract relevant variable names for Z_lm values
x_var <- paste0("Z_lm_", rel$x)
y_var <- paste0("Z_lm_", rel$y)
# Access the correlation statistics from the correlation_stats list
relationship_name <- paste0(rel$x, "_vs_", rel$y) # Example: L_vs_K
stats <- correlation_stats[[relationship_name]]
intercept <- stats$intercept
slope <- stats$slope
r_squared <- stats$r_squared
# Generate the label for the plot
plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
# Construct plot config
plot_config <- list(
df = df,
x_var = rel$x,
y_var = rel$y,
x_var = x_var,
y_var = y_var,
plot_type = "scatter",
title = rel$label,
title = plot_label,
annotations = list(
list(
x = mean(df[[rel$x]], na.rm = TRUE),
y = mean(df[[rel$y]], na.rm = TRUE),
label = paste("R-squared =", round(r_squared, 3)))
x = mean(df[[x_var]], na.rm = TRUE),
y = mean(df[[y_var]], na.rm = TRUE),
label = paste("R-squared =", round(r_squared, 3))
)
),
smooth = TRUE,
smooth_color = "tomato3",
lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
lm_line = list(
intercept = intercept,
slope = slope
),
shape = 3,
size = 0.5,
color_var = "Overlap",
cyan_points = highlight_cyan
cyan_points = highlight_cyan # Include cyan points or not based on the loop
)
plot_configs <- append(plot_configs, list(plot_config))
}
}
return(list(plots = plot_configs))
}
@@ -1041,7 +1097,7 @@ main <- function() {
file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
row.names = FALSE)
# Each plots list corresponds to a file
# Each list of plots corresponds to a file
l_vs_k_plot_configs <- list(
plots = list(
list(
@@ -1147,7 +1203,7 @@ main <- function() {
plot_type = "scatter",
title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
color_var = "conc_num_factor_factor",
position = "jitter", # Apply jitter for better visibility
position = "jitter",
tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
annotations = list(
list(
@@ -1171,7 +1227,7 @@ main <- function() {
plot_type = "scatter",
title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
color_var = "conc_num_factor_factor",
position = "jitter", # Apply jitter for better visibility
position = "jitter",
tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
annotations = list(
list(
@@ -1187,7 +1243,7 @@ main <- function() {
)
message("Generating quality control plots in parallel")
# # future::plan(future::multicore, workers = parallel::detectCores())
# future::plan(future::multicore, workers = parallel::detectCores())
future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
plot_configs <- list(
@@ -1298,11 +1354,11 @@ main <- function() {
# Create interaction plots
message("Generating reference interaction plots")
reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, plot_type = "reference")
reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
message("Generating deletion interaction plots")
deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, plot_type = "deletion")
deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
# Define conditions for enhancers and suppressors
@@ -1372,29 +1428,6 @@ main <- function() {
generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
plot_configs = rank_lm_plot_configs)
message("Filtering and reranking plots")
interaction_threshold <- 2 # TODO add to study config?
# Formerly X_NArm
zscore_interactions_filtered <- zscore_interactions_joined %>%
filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
mutate(
Overlap = case_when(
Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
TRUE ~ "No Effect"
),
lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
)
message("Generating filtered ranked plots")
rank_plot_filtered_configs <- generate_rank_plot_configs(
df = zscore_interactions_filtered,
@@ -1430,3 +1463,6 @@ main <- function() {
})
}
main()
# For future simplification of joined dataframes
# df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))