Skip nullgrob() since plot generation provides full chunks

This commit is contained in:
2024-10-06 18:16:16 -04:00
parent c6fec56630
commit bc0a7579c8

View File

@@ -597,13 +597,13 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
grid_layout$nrow <- ceiling(num_plots / grid_layout$ncol) grid_layout$nrow <- ceiling(num_plots / grid_layout$ncol)
} }
total_spots <- grid_layout$nrow * grid_layout$ncol # total_spots <- grid_layout$nrow * grid_layout$ncol
num_plots <- length(static_plots) # num_plots <- length(static_plots)
if (num_plots < total_spots) { # if (num_plots < total_spots) {
message("Filling ", total_spots - num_plots, " empty spots with nullGrob()") # message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE)) # static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
} # }
grid.arrange( grid.arrange(
grobs = static_plots, grobs = static_plots,
@@ -739,36 +739,16 @@ generate_scatter_plot <- function(plot, config) {
slope <- config$lm_line$slope slope <- config$lm_line$slope
color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue") color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue")
linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1) linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
y_min <- intercept + slope * x_min
y_max <- intercept + slope * x_max
# Ensure y-values are within y-limits (if any)
if (!is.null(config$ylim_vals)) {
y_min_within_limits <- y_min >= config$ylim_vals[1] && y_min <= config$ylim_vals[2]
y_max_within_limits <- y_max >= config$ylim_vals[1] && y_max <= config$ylim_vals[2]
# Ensure none of the values are NA and calculate y-values # Adjust or skip based on whether the values fall within limits
if (!is.na(x_min) && !is.na(x_max) && !is.na(intercept) && !is.na(slope)) { if (y_min_within_limits && y_max_within_limits) {
y_min <- intercept + slope * x_min
y_max <- intercept + slope * x_max
# Ensure y-values are within y-limits (if any)
if (!is.null(config$ylim_vals)) {
y_min_within_limits <- y_min >= config$ylim_vals[1] && y_min <= config$ylim_vals[2]
y_max_within_limits <- y_max >= config$ylim_vals[1] && y_max <= config$ylim_vals[2]
# Adjust or skip based on whether the values fall within limits
if (y_min_within_limits && y_max_within_limits) {
# Ensure x-values are also valid
if (!is.na(x_min) && !is.na(x_max)) {
plot <- plot + annotate(
"segment",
x = x_min,
xend = x_max,
y = y_min,
yend = y_max,
color = color,
linewidth = linewidth
)
}
} else {
message("Skipping linear regression line due to y-values outside of limits")
}
} else {
# If no y-limits are provided, proceed with the annotation
plot <- plot + annotate( plot <- plot + annotate(
"segment", "segment",
x = x_min, x = x_min,
@@ -778,9 +758,20 @@ generate_scatter_plot <- function(plot, config) {
color = color, color = color,
linewidth = linewidth linewidth = linewidth
) )
} else {
message("Skipping linear regression line due to y-values outside of limits")
} }
} else { } else {
message("Skipping linear regression line due to missing or invalid values") # If no y-limits are provided, proceed with the annotation
plot <- plot + annotate(
"segment",
x = x_min,
xend = x_max,
y = y_min,
yend = y_max,
color = color,
linewidth = linewidth
)
} }
} }
@@ -1052,7 +1043,7 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
NG_value <- first(group_data_filtered$NG, default = 0) NG_value <- first(group_data_filtered$NG, default = 0)
DB_value <- first(group_data_filtered$DB, default = 0) DB_value <- first(group_data_filtered$DB, default = 0)
SM_value <- first(group_data_filtered$SM, default = 0) SM_value <- first(group_data_filtered$SM, default = 0)
lm_intercept_col <- paste0("lm_intercept_", var) lm_intercept_col <- paste0("lm_intercept_", var)
lm_slope_col <- paste0("lm_slope_", var) lm_slope_col <- paste0("lm_slope_", var)
lm_intercept_value <- first(group_data_filtered[[lm_intercept_col]], default = 0) lm_intercept_value <- first(group_data_filtered[[lm_intercept_col]], default = 0)
@@ -1485,7 +1476,7 @@ main <- function() {
message("Generating quality control plots in parallel") message("Generating quality control plots in parallel")
# future::plan(future::multicore, workers = parallel::detectCores()) # future::plan(future::multicore, workers = parallel::detectCores())
future::plan(future::multisession, workers = 3) # generate 3 plots in parallel future::plan(future::multisession, workers = 3) # generate 3 plot files in parallel
plot_configs <- list( plot_configs <- list(
list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control", list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",