Move y-limit filtering from generate_and_save_plots to generate_interaction_plot_configs
This commit is contained in:
@@ -525,36 +525,17 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
||||
config <- group$plots[[i]]
|
||||
df <- config$df
|
||||
|
||||
# Filter and debug out-of-bounds data
|
||||
if (!is.null(config$ylim_vals)) {
|
||||
out_of_bounds <- df %>%
|
||||
filter(
|
||||
is.na(.data[[config$y_var]]) |
|
||||
.data[[config$y_var]] < config$ylim_vals[1] |
|
||||
.data[[config$y_var]] > config$ylim_vals[2]
|
||||
)
|
||||
if (nrow(out_of_bounds) > 0) {
|
||||
message("Filtered ", nrow(out_of_bounds), " row(s) from '", config$title, "' because ", config$y_var,
|
||||
" is outside of y-limits: [", config$ylim_vals[1], ", ", config$ylim_vals[2], "]:")
|
||||
# print(out_of_bounds %>% select(OrfRep, Gene, num, Drug, scan, Plate, Row, Col, conc_num, all_of(config$y_var)), width = 1000)
|
||||
}
|
||||
df <- df %>%
|
||||
filter(
|
||||
!is.na(.data[[config$y_var]]) &
|
||||
.data[[config$y_var]] >= config$ylim_vals[1] &
|
||||
.data[[config$y_var]] <= config$ylim_vals[2]
|
||||
)
|
||||
}
|
||||
|
||||
# Filter NAs
|
||||
if (!is.null(config$filter_na) && config$filter_na) {
|
||||
df <- df %>%
|
||||
filter(!is.na(.data[[config$y_var]]))
|
||||
}
|
||||
|
||||
# TODO for now skip all NA plots NA data
|
||||
# Eventually add to own or filter_na block so we can handle selectively
|
||||
if (nrow(df) == 0) {
|
||||
message("No data available after filtering for plot ", config$title)
|
||||
next # Skip this plot if no data is available
|
||||
message("Insufficient data for plot:", config$title)
|
||||
next # skip plot if insufficient data is available
|
||||
}
|
||||
|
||||
aes_mapping <- if (config$plot_type == "bar") {
|
||||
@@ -599,10 +580,10 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
||||
if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
|
||||
if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
|
||||
|
||||
plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
|
||||
#plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
|
||||
|
||||
static_plots[[i]] <- plot
|
||||
plotly_plots[[i]] <- plotly_plot
|
||||
#plotly_plots[[i]] <- plotly_plot
|
||||
}
|
||||
|
||||
grid_layout <- group$grid_layout
|
||||
@@ -624,16 +605,11 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
||||
static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
|
||||
}
|
||||
|
||||
tryCatch({
|
||||
grid.arrange(
|
||||
grobs = static_plots,
|
||||
ncol = grid_layout$ncol,
|
||||
nrow = grid_layout$nrow
|
||||
)
|
||||
}, error = function(e) {
|
||||
message("Error in grid.arrange: ", e$message)
|
||||
print(static_plots)
|
||||
})
|
||||
|
||||
} else {
|
||||
for (plot in static_plots) {
|
||||
@@ -644,15 +620,14 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
||||
|
||||
dev.off()
|
||||
|
||||
out_html_file <- file.path(out_dir, paste0(filename, ".html"))
|
||||
message("Saving combined HTML file: ", out_html_file)
|
||||
htmltools::save_html(
|
||||
htmltools::tagList(plotly_plots),
|
||||
file = out_html_file
|
||||
)
|
||||
# out_html_file <- file.path(out_dir, paste0(filename, ".html"))
|
||||
# message("Saving combined HTML file: ", out_html_file)
|
||||
# htmltools::save_html(
|
||||
# htmltools::tagList(plotly_plots),
|
||||
# file = out_html_file
|
||||
# )
|
||||
}
|
||||
|
||||
|
||||
generate_scatter_plot <- function(plot, config) {
|
||||
|
||||
# Define the points
|
||||
@@ -790,7 +765,7 @@ generate_scatter_plot <- function(plot, config) {
|
||||
)
|
||||
}
|
||||
} else {
|
||||
message("Skipping linear modeling line due to y-values outside of limits.")
|
||||
message("Skipping linear regression line due to y-values outside of limits")
|
||||
}
|
||||
} else {
|
||||
# If no y-limits are provided, proceed with the annotation
|
||||
@@ -805,7 +780,7 @@ generate_scatter_plot <- function(plot, config) {
|
||||
)
|
||||
}
|
||||
} else {
|
||||
message("Skipping linear modeling line due to missing or invalid values.")
|
||||
message("Skipping linear regression line due to missing or invalid values")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -984,7 +959,6 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
||||
)
|
||||
plot_config$position <- "jitter"
|
||||
|
||||
# Cannot figure out how to place these properly for discrete x-axis so let's be hacky
|
||||
annotations <- list(
|
||||
list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
|
||||
list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
|
||||
@@ -1045,26 +1019,50 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
||||
for (var in names(delta_limits_map)) {
|
||||
y_limits <- delta_limits_map[[var]]
|
||||
y_span <- y_limits[2] - y_limits[1]
|
||||
y_var_name <- paste0("Delta_", var)
|
||||
|
||||
WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
|
||||
Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
|
||||
Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
|
||||
R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
|
||||
# Anti-filter to select out-of-bounds rows
|
||||
out_of_bounds <- group_data %>%
|
||||
filter(is.na(.data[[y_var_name]]) |
|
||||
.data[[y_var_name]] < y_limits[1] |
|
||||
.data[[y_var_name]] > y_limits[2])
|
||||
|
||||
NG_value <- first(group_data$NG, default = 0)
|
||||
DB_value <- first(group_data$DB, default = 0)
|
||||
SM_value <- first(group_data$SM, default = 0)
|
||||
if (nrow(out_of_bounds) > 0) {
|
||||
message(sprintf("Filtered %d row(s) from '%s' because %s is outside of y-limits: [%f, %f]",
|
||||
nrow(out_of_bounds), OrfRepTitle, y_var_name, y_limits[1], y_limits[2]
|
||||
))
|
||||
}
|
||||
|
||||
# Do the actual filtering
|
||||
group_data_filtered <- group_data %>%
|
||||
filter(!is.na(.data[[y_var_name]]) &
|
||||
.data[[y_var_name]] >= y_limits[1] &
|
||||
.data[[y_var_name]] <= y_limits[2])
|
||||
|
||||
if (nrow(group_data_filtered) == 0) {
|
||||
message("Insufficient data for plot: ", OrfRepTitle, " ", var)
|
||||
next # skip plot if insufficient data is available
|
||||
}
|
||||
|
||||
WT_sd_value <- first(group_data_filtered[[paste0("WT_sd_", var)]], default = 0)
|
||||
Z_Shift_value <- round(first(group_data_filtered[[paste0("Z_Shift_", var)]], default = 0), 2)
|
||||
Z_lm_value <- round(first(group_data_filtered[[paste0("Z_lm_", var)]], default = 0), 2)
|
||||
R_squared_value <- round(first(group_data_filtered[[paste0("R_Squared_", var)]], default = 0), 2)
|
||||
|
||||
NG_value <- first(group_data_filtered$NG, default = 0)
|
||||
DB_value <- first(group_data_filtered$DB, default = 0)
|
||||
SM_value <- first(group_data_filtered$SM, default = 0)
|
||||
|
||||
lm_intercept_col <- paste0("lm_intercept_", var)
|
||||
lm_slope_col <- paste0("lm_slope_", var)
|
||||
lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
|
||||
lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
|
||||
lm_intercept_value <- first(group_data_filtered[[lm_intercept_col]], default = 0)
|
||||
lm_slope_value <- first(group_data_filtered[[lm_slope_col]], default = 0)
|
||||
|
||||
plot_config <- list(
|
||||
df = group_data,
|
||||
df = group_data_filtered,
|
||||
plot_type = "scatter",
|
||||
x_var = "conc_num_factor_factor",
|
||||
y_var = paste0("Delta_", var),
|
||||
y_var = y_var_name,
|
||||
x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
|
||||
shape = 16,
|
||||
title = paste(OrfRepTitle, Gene, sep = " "),
|
||||
@@ -1087,17 +1085,16 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
||||
color = "gray70",
|
||||
linewidth = 0.5
|
||||
),
|
||||
x_breaks = unique(group_data$conc_num_factor_factor),
|
||||
x_labels = as.character(unique(group_data$conc_num)),
|
||||
x_breaks = unique(group_data_filtered$conc_num_factor_factor),
|
||||
x_labels = as.character(unique(group_data_filtered$conc_num)),
|
||||
ylim_vals = y_limits,
|
||||
# filter_na = TRUE,
|
||||
lm_line = list(
|
||||
intercept = lm_intercept_value,
|
||||
slope = lm_slope_value,
|
||||
color = "blue",
|
||||
linewidth = 0.8,
|
||||
x_min = min(as.numeric(group_data$conc_num_factor_factor)),
|
||||
x_max = max(as.numeric(group_data$conc_num_factor_factor))
|
||||
x_min = min(as.numeric(group_data_filtered$conc_num_factor_factor)),
|
||||
x_max = max(as.numeric(group_data_filtered$conc_num_factor_factor))
|
||||
)
|
||||
)
|
||||
delta_plot_configs <- append(delta_plot_configs, list(plot_config))
|
||||
@@ -1587,16 +1584,16 @@ main <- function() {
|
||||
group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
|
||||
)$df_with_stats
|
||||
|
||||
# message("Calculating reference strain interaction scores")
|
||||
# reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
|
||||
# df_reference_interactions_joined <- reference_results$full_data
|
||||
# df_reference_interactions <- reference_results$interactions
|
||||
# write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
|
||||
# write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
|
||||
message("Calculating reference strain interaction scores")
|
||||
reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
|
||||
df_reference_interactions_joined <- reference_results$full_data
|
||||
df_reference_interactions <- reference_results$interactions
|
||||
write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
|
||||
write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
|
||||
|
||||
# message("Generating reference interaction plots")
|
||||
# reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
|
||||
# generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
|
||||
message("Generating reference interaction plots")
|
||||
reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
|
||||
generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
|
||||
|
||||
message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
|
||||
df_deletion <- df_na_stats %>% # formerly X2
|
||||
|
||||
Reference in New Issue
Block a user