Add more output to calculate_interaction_zscores.R

This commit is contained in:
2024-08-23 22:43:41 -04:00
parent b25dfb70b4
commit dc5dea8bfc

View File

@@ -1,10 +1,10 @@
suppressMessages({ suppressMessages({
library("ggplot2") library(ggplot2)
library("plotly") library(plotly)
library("htmlwidgets") library(htmlwidgets)
library("dplyr") library(dplyr)
library("ggthemes") library(ggthemes)
library("data.table") library(data.table)
}) })
# Constants for configuration # Constants for configuration
@@ -14,10 +14,9 @@ BASE_SIZE <- 14
options(warn = 2, max.print = 100) options(warn = 2, max.print = 100)
# Function to parse arguments
parse_arguments <- function() { parse_arguments <- function() {
if (interactive()) { args <- if (interactive()) {
args <- c( c(
"/home/bryan/documents/develop/scripts/hartmanlab/workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD", "/home/bryan/documents/develop/scripts/hartmanlab/workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
3, 3,
"/home/bryan/documents/develop/scripts/hartmanlab/workflow/apps/r/SGD_features.tab", "/home/bryan/documents/develop/scripts/hartmanlab/workflow/apps/r/SGD_features.tab",
@@ -28,7 +27,7 @@ parse_arguments <- function() {
"Experiment 2: HLD versus Doxo" "Experiment 2: HLD versus Doxo"
) )
} else { } else {
args <- commandArgs(trailingOnly = TRUE) commandArgs(trailingOnly = TRUE)
} }
paths <- normalizePath(file.path(args[seq(5, length(args), by = 2)]), mustWork = FALSE) paths <- normalizePath(file.path(args[seq(5, length(args), by = 2)]), mustWork = FALSE)
@@ -46,7 +45,6 @@ parse_arguments <- function() {
args <- parse_arguments() args <- parse_arguments()
# Ensure main output directories exist
dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE) dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE) dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
@@ -109,26 +107,20 @@ sgd_genes <- function(sgd_gene_list) {
genes <- sgd_genes(args$sgd_gene_list) genes <- sgd_genes(args$sgd_gene_list)
load_and_preprocess_data <- function(easy_results_file, genes) { load_and_preprocess_data <- function(easy_results_file, genes) {
# Attempt to read the file and handle any errors that occur
df <- tryCatch({ df <- tryCatch({
read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE) read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
}, error = function(e) { }, error = function(e) {
stop("Error reading file: ", easy_results_file, "\n", e$message) stop("Error reading file: ", easy_results_file, "\n", e$message)
}) })
# Filter out non-data rows
df <- df %>%
filter(!.[[1]] %in% c("", "Scan"))
# Convert specified columns to numeric
numeric_columns <- c("Col", "Row", "l", "K", "r", "Scan", "AUC96", "LstBackgrd", "X1stBackgrd") numeric_columns <- c("Col", "Row", "l", "K", "r", "Scan", "AUC96", "LstBackgrd", "X1stBackgrd")
df[numeric_columns[numeric_columns %in% colnames(df)]] <- df[numeric_columns[numeric_columns %in% colnames(df)]] <-
lapply(df[numeric_columns[numeric_columns %in% colnames(df)]], as.numeric) suppressWarnings(lapply(df[numeric_columns[numeric_columns %in% colnames(df)]], as.numeric))
# Further filter and mutate the data
df <- df %>% df <- df %>%
filter(!(Scan %in% c("", "Scan"))) %>% filter(!.[[1]] %in% c("", "Scan")) %>%
{if ("Conc" %in% colnames(.)) filter(., Conc != "0ug/mL") else .} %>% filter(Gene != "BLANK" & Gene != "Blank" & ORF != "Blank" & Gene != "blank") %>%
filter(Drug != "BMH21") %>%
mutate( mutate(
L = if ("l" %in% colnames(.)) l else {warning("Missing column: l"); NA}, L = if ("l" %in% colnames(.)) l else {warning("Missing column: l"); NA},
AUC = if ("AUC96" %in% colnames(.)) AUC96 else {warning("Missing column: AUC96"); NA}, AUC = if ("AUC96" %in% colnames(.)) AUC96 else {warning("Missing column: AUC96"); NA},
@@ -138,22 +130,26 @@ load_and_preprocess_data <- function(easy_results_file, genes) {
GeneName = vapply(ORF, function(orf) { GeneName = vapply(ORF, function(orf) {
gene_name <- genes %>% filter(ORF == orf) %>% pull(GeneName) gene_name <- genes %>% filter(ORF == orf) %>% pull(GeneName)
ifelse(is.null(gene_name) || gene_name == "" || length(gene_name) == 0, orf, gene_name) ifelse(is.null(gene_name) || gene_name == "" || length(gene_name) == 0, orf, gene_name)
}, character(1)) }, character(1)),
) OrfRep = ifelse(ORF == "YDL227C", "YDL227C", OrfRep)
) # %>%
# mutate(across(everything(), ~na_if(., "")))
# Check if the dataframe is empty after filtering
if (nrow(df) == 0) warning("Dataframe is empty after filtering") if (nrow(df) == 0) warning("Dataframe is empty after filtering")
return(df) return(df)
} }
# Plot creation and publication
create_and_publish_plot <- function(df, var, plot_type, out_dir_qc, suffix = "") { create_and_publish_plot <- function(df, var, plot_type, out_dir_qc, suffix = "") {
if (!("Scan" %in% colnames(df))) {
warning("'Scan' column is not present in the data. Skipping this plot.")
return(NULL)
}
plot_func <- if (plot_type == "scatter") geom_point else geom_boxplot plot_func <- if (plot_type == "scatter") geom_point else geom_boxplot
filtered_df <- df[is.finite(df[[var]]), ] filtered_df <- df[is.finite(df[[var]]), ]
p <- ggplot(filtered_df, aes(Scan, .data[[var]], color = as.factor(conc_num))) + p <- ggplot(filtered_df, aes(Scan, !!sym(var), color = as.factor(conc_num))) +
plot_func(shape = 3, size = 0.2, position = "jitter") + plot_func(shape = 3, size = 0.2, position = "jitter") +
stat_summary(fun = mean, geom = "point", size = 0.6) + stat_summary(fun = mean, geom = "point", size = 0.6) +
stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1), geom = "errorbar") + stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1), geom = "errorbar") +
@@ -171,7 +167,6 @@ create_and_publish_plot <- function(df, var, plot_type, out_dir_qc, suffix = "")
saveWidget(pgg, html_path, selfcontained = TRUE) saveWidget(pgg, html_path, selfcontained = TRUE)
} }
# Summary statistics publication
publish_summary_stats <- function(df, variables, out_dir) { publish_summary_stats <- function(df, variables, out_dir) {
stats_list <- lapply(variables, function(var) { stats_list <- lapply(variables, function(var) {
df %>% df %>%
@@ -209,9 +204,41 @@ publish_interaction_scores <- function(df, out_dir) {
fwrite(interaction_scores, file.path(out_dir, "rf_zscores_interaction.csv"), row.names = FALSE) fwrite(interaction_scores, file.path(out_dir, "rf_zscores_interaction.csv"), row.names = FALSE)
fwrite(dplyr::arrange(interaction_scores, l_rank, k_rank), fwrite(dplyr::arrange(interaction_scores, l_rank, k_rank),
file.path(out_dir, "rf_zscores_interaction_ranked.csv"), row.names = FALSE) file.path(out_dir, "rf_zscores_interaction_ranked.csv"), row.names = FALSE)
# Additional enhancer and suppressor calculations and outputs
deletion_enhancers_L <- interaction_scores[interaction_scores$mean_L >= 2, ]
deletion_enhancers_L <- deletion_enhancers_L[!is.na(deletion_enhancers_L$OrfRep), ]
deletion_enhancers_K <- interaction_scores[interaction_scores$mean_K <= -2, ]
deletion_enhancers_K <- deletion_enhancers_K[!is.na(deletion_enhancers_K$OrfRep), ]
deletion_suppressors_L <- interaction_scores[interaction_scores$mean_L <= -2, ]
deletion_suppressors_L <- deletion_suppressors_L[!is.na(deletion_suppressors_L$OrfRep), ]
deletion_suppressors_K <- interaction_scores[interaction_scores$mean_K >= 2, ]
deletion_suppressors_K <- deletion_suppressors_K[!is.na(deletion_suppressors_K$OrfRep), ]
deletion_enhancers_and_suppressors_L <- interaction_scores[
interaction_scores$mean_L >= 2 | interaction_scores$mean_L <= -2, ]
deletion_enhancers_and_suppressors_L <- deletion_enhancers_and_suppressors_L[
!is.na(deletion_enhancers_and_suppressors_L$OrfRep), ]
deletion_enhancers_and_suppressors_K <- interaction_scores[
interaction_scores$mean_K >= 2 | interaction_scores$mean_K <= -2, ]
deletion_enhancers_and_suppressors_K <- deletion_enhancers_and_suppressors_K[
!is.na(deletion_enhancers_and_suppressors_K$OrfRep), ]
# Write CSV files with updated filenames
fwrite(deletion_enhancers_L, file.path(out_dir, "deletion_enhancers_l.csv"), row.names = FALSE)
fwrite(deletion_enhancers_K, file.path(out_dir, "deletion_enhancers_k.csv"), row.names = FALSE)
fwrite(deletion_suppressors_L, file.path(out_dir, "deletion_suppressors_l.csv"), row.names = FALSE)
fwrite(deletion_suppressors_K, file.path(out_dir, "deletion_suppressors_k.csv"), row.names = FALSE)
fwrite(deletion_enhancers_and_suppressors_L, file.path(out_dir, "deletion_enhancers_and_suppressors_l.csv"), row.names = FALSE)
fwrite(deletion_enhancers_and_suppressors_K, file.path(out_dir, "deletion_enhancers_and_suppressors_k.csv"), row.names = FALSE)
return(interaction_scores) # Return the updated data frame with rank columns
} }
# Z-scores publication
publish_zscores <- function(df, out_dir) { publish_zscores <- function(df, out_dir) {
zscores <- df %>% zscores <- df %>%
dplyr::mutate( dplyr::mutate(
@@ -224,33 +251,121 @@ publish_zscores <- function(df, out_dir) {
fwrite(zscores, file.path(out_dir, "zscores_interaction.csv"), row.names = FALSE) fwrite(zscores, file.path(out_dir, "zscores_interaction.csv"), row.names = FALSE)
} }
# QC generation and publication
generate_and_publish_qc <- function(df, delta_bg_tolerance, out_dir_qc) { generate_and_publish_qc <- function(df, delta_bg_tolerance, out_dir_qc) {
variables <- c("L", "K", "r", "AUC", "delta_bg") variables <- c("L", "K", "r", "AUC", "delta_bg")
lapply(variables, create_and_publish_plot, df = df, plot_type = "scatter", out_dir_qc = out_dir_qc)
# Pre-QC plots
lapply(variables, function(var) {
if (var %in% colnames(df)) {
create_and_publish_plot(df, var, "scatter", out_dir_qc)
}
})
# Filter data based on delta background tolerance for Post-QC analysis
df_post_qc <- df %>%
mutate(across(all_of(variables),
~ ifelse(delta_bg >= delta_bg_tolerance, NA, .)))
# Post-QC plots
lapply(variables, function(var) {
if (var %in% colnames(df_post_qc)) {
create_and_publish_plot(df_post_qc, var, "scatter", out_dir_qc, suffix = "_after_qc")
}
})
# For plots specifically for data above the tolerance threshold
delta_bg_above_tolerance <- df[df$delta_bg >= delta_bg_tolerance, ] delta_bg_above_tolerance <- df[df$delta_bg >= delta_bg_tolerance, ]
lapply(variables, create_and_publish_plot, df = delta_bg_above_tolerance, lapply(variables, function(var) {
plot_type = "scatter", out_dir_qc = out_dir_qc, suffix = "_above_tolerance") if (var %in% colnames(delta_bg_above_tolerance)) {
create_and_publish_plot(delta_bg_above_tolerance, var, "scatter", out_dir_qc, suffix = "_above_tolerance")
}
})
} }
# Process experiments # Create rank plots
process_experiment <- function(exp_name, exp_dir, sgd_genes, output_dir) { create_rank_plots <- function(interaction_scores, out_dir) {
rank_vars <- c("l_rank", "k_rank", "r_rank", "auc_rank")
lapply(rank_vars, function(rank_var) {
p <- ggplot(interaction_scores, aes(x = !!sym(rank_var))) +
geom_bar() +
ggtitle(paste("Rank Distribution for", rank_var)) +
theme_publication()
pdf_path <- file.path(out_dir, paste0("rank_distribution_", rank_var, ".pdf"))
pdf(pdf_path, width = PLOT_WIDTH, height = PLOT_HEIGHT)
print(p)
dev.off()
# Generate HTML output
html_path <- sub(".pdf$", ".html", pdf_path)
pgg <- suppressWarnings(ggplotly(p) %>%
layout(legend = list(orientation = "h")))
saveWidget(pgg, html_path, selfcontained = TRUE)
})
}
create_correlation_plot <- function(interaction_scores, out_dir) {
# Check for non-finite values and remove them from the dataset
interaction_scores <- interaction_scores %>%
filter_all(all_vars(is.finite(.)))
# Generate correlation plots for each pair of variables
pairs <- list(
c("mean_L", "mean_K"),
c("mean_L", "mean_r"),
c("mean_L", "mean_AUC"),
c("mean_K", "mean_r"),
c("mean_K", "mean_AUC"),
c("mean_r", "mean_AUC")
)
lapply(pairs, function(vars) {
p <- ggplot(interaction_scores, aes(x = !!sym(vars[1]), y = !!sym(vars[2]))) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
ggtitle(paste("Correlation between", vars[1], "and", vars[2])) +
theme_publication()
pdf_path <- file.path(out_dir, paste0("correlation_", vars[1], "_", vars[2], ".pdf"))
pdf(pdf_path, width = PLOT_WIDTH, height = PLOT_HEIGHT)
print(p)
dev.off()
# Generate HTML output
html_path <- sub(".pdf$", ".html", pdf_path)
pgg <- suppressWarnings(ggplotly(p, tooltip = c(vars[1], vars[2])) %>%
layout(legend = list(orientation = "h")))
saveWidget(pgg, html_path, selfcontained = TRUE)
})
}
process_experiment <- function(exp_name, exp_dir, genes, output_dir) {
out_dir <- file.path(exp_dir, "zscores") out_dir <- file.path(exp_dir, "zscores")
out_dir_qc <- file.path(out_dir, "qc") out_dir_qc <- file.path(out_dir, "qc")
dir.create(out_dir, showWarnings = FALSE, recursive = TRUE) dir.create(out_dir, showWarnings = FALSE, recursive = TRUE)
dir.create(out_dir_qc, showWarnings = FALSE) dir.create(out_dir_qc, showWarnings = FALSE)
data <- load_and_preprocess_data(args$easy_results_file, sgd_genes) data <- load_and_preprocess_data(args$easy_results_file, genes)
# Calculate delta background tolerance
delta_bg_tolerance <- mean(data$delta_bg, na.rm = TRUE) + 3 * sd(data$delta_bg, na.rm = TRUE) delta_bg_tolerance <- mean(data$delta_bg, na.rm = TRUE) + 3 * sd(data$delta_bg, na.rm = TRUE)
# Generate and publish QC plots (both pre-QC and post-QC)
generate_and_publish_qc(data, delta_bg_tolerance, out_dir_qc) generate_and_publish_qc(data, delta_bg_tolerance, out_dir_qc)
# Process and publish summary stats, interaction scores, and z-scores
variables <- c("L", "K", "r", "AUC", "delta_bg") variables <- c("L", "K", "r", "AUC", "delta_bg")
publish_summary_stats(data, variables, out_dir) publish_summary_stats(data, variables, out_dir)
publish_interaction_scores(data, out_dir) interaction_scores <- publish_interaction_scores(data, out_dir)
publish_zscores(data, out_dir) publish_zscores(data, out_dir)
# Generate rank plots and correlation plots
create_rank_plots(interaction_scores, out_dir)
create_correlation_plot(interaction_scores, out_dir)
output_file <- file.path(out_dir, "zscores_interaction.csv") output_file <- file.path(out_dir, "zscores_interaction.csv")
fwrite(data, output_file, row.names = FALSE) fwrite(data, output_file, row.names = FALSE)