Use a single df for interaction calculations

This commit is contained in:
2024-09-12 18:57:32 -04:00
parent bfc67574bc
commit e193da0541

View File

@@ -204,7 +204,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
)
calculations <- df %>%
stats <- df %>%
mutate(
WT_L = df$mean_L,
WT_K = df$mean_K,
@@ -232,7 +232,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
) %>%
ungroup()
calculations <- calculations %>%
stats <- stats %>%
group_by(across(all_of(group_vars))) %>%
mutate(
Raw_Shift_L = mean_L[[1]] - bg_means$L,
@@ -245,7 +245,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
)
calculations <- calculations %>%
stats <- stats %>%
mutate(
Exp_L = WT_L + Raw_Shift_L,
Exp_K = WT_K + Raw_Shift_K,
@@ -253,7 +253,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
Exp_AUC = WT_AUC + Raw_Shift_AUC
)
calculations <- calculations %>%
stats <- stats %>%
mutate(
Delta_L = mean_L - Exp_L,
Delta_K = mean_K - Exp_K,
@@ -261,7 +261,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
Delta_AUC = mean_AUC - Exp_AUC
)
calculations <- calculations %>%
stats <- stats %>%
mutate(
Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
@@ -270,16 +270,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
)
lms <- calculations %>%
group_by(across(all_of(group_vars))) %>%
summarise(
lm_L = list(lm(Delta_L ~ conc_num_factor)),
lm_K = list(lm(Delta_K ~ conc_num_factor)),
lm_r = list(lm(Delta_r ~ conc_num_factor)),
lm_AUC = list(lm(Delta_AUC ~ conc_num_factor))
)
interactions <- calculations %>%
stats <- stats %>%
mutate(
Zscore_L = Delta_L / WT_sd_L,
Zscore_K = Delta_K / WT_sd_K,
@@ -287,7 +278,15 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
Zscore_AUC = Delta_AUC / WT_sd_AUC
)
interactions <- interactions %>%
lms <- stats %>%
summarise(
lm_L = list(lm(Delta_L ~ conc_num_factor)),
lm_K = list(lm(Delta_K ~ conc_num_factor)),
lm_r = list(lm(Delta_r ~ conc_num_factor)),
lm_AUC = list(lm(Delta_AUC ~ conc_num_factor))
)
stats <- stats %>%
left_join(lms, by = group_vars) %>%
mutate(
lm_Score_L = sapply(lm_L, function(model) coef(model)[2] * max_conc + coef(model)[1]),
@@ -304,7 +303,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
)
interactions <- interactions %>%
stats <- stats %>%
mutate(
Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
@@ -317,7 +316,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
)
# Declare column order for output
calculations <- calculations %>%
calculations <- stats %>%
select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
"mean_L", "mean_K", "mean_r", "mean_AUC",
"median_L", "median_K", "median_r", "median_AUC",
@@ -332,7 +331,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
ungroup()
# Also arrange results by Z_lm_L and NG
interactions <- interactions %>%
interactions <- stats %>%
select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
"Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
"lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",