Rollup
This commit is contained in:
@@ -20,25 +20,25 @@ library(htmlwidgets)
|
||||
|
||||
# Parse arguments
|
||||
args <- commandArgs(TRUE)
|
||||
inputFile <- args[1]
|
||||
inputFile <- file.path(args[1])
|
||||
|
||||
# Set output dir
|
||||
if (length(args) >= 2) {
|
||||
outDir <- args[2]
|
||||
outDir <- file.path(args[2])
|
||||
} else {
|
||||
outDir <- "/ZScores/" # for legacy workflow
|
||||
}
|
||||
|
||||
# Set StudyInfo file path
|
||||
if (length(args) >= 3) {
|
||||
studyInfo <- args[3]
|
||||
studyInfo <- file.path(args[3])
|
||||
} else {
|
||||
studyInfo <- "../Code/StudyInfo.csv" # for legacy workflow
|
||||
}
|
||||
|
||||
# Set SGDgeneList file path
|
||||
if (length(args) >= 4) {
|
||||
SGDgeneList <- args[4]
|
||||
SGDgeneList <- file.path(args[4])
|
||||
} else {
|
||||
SGDgeneList <- "../Code/SGD_features.tab" # for legacy workflow
|
||||
}
|
||||
@@ -54,7 +54,7 @@ if (length(args) >= 5) {
|
||||
}
|
||||
delBGFactor <- as.numeric(delBGFactor)
|
||||
if (is.na(delBGFactor)) {
|
||||
delBGFactor <- 3 # Recommended by Sean
|
||||
delBGFactor <- 3 # recommended by Sean
|
||||
}
|
||||
print(paste("The Standard Deviation Value is:", delBGFactor))
|
||||
|
||||
@@ -68,21 +68,25 @@ if (length(args) >= 6) {
|
||||
}
|
||||
expNumber <- as.numeric(expNumber)
|
||||
|
||||
outDir_QC <- paste(outDir, "QC/", sep = "")
|
||||
outDir_QC <- file.path(outDir, "QC")
|
||||
|
||||
if (!file.exists(outDir)) {
|
||||
dir.create(file.path(outDir))
|
||||
dir.create(outDir)
|
||||
}
|
||||
|
||||
if (!file.exists(outDir_QC)) {
|
||||
dir.create(file.path(outDir_QC))
|
||||
}
|
||||
|
||||
# Capture Exp_ number, use it to Save args[2]{std}to Labels field and then
|
||||
# write to Labels to studyInfo.txt for future reference
|
||||
Labels <- read.csv(file = studyInfo, stringsAsFactors = FALSE) # sep = ","
|
||||
Labels[expNumber, 3] <- delBGFactor
|
||||
write.csv(Labels, file = studyInfo, row.names = FALSE)
|
||||
options(width = 1000)
|
||||
ls.str()
|
||||
|
||||
# Write delBJFactor to the StudyInfo file
|
||||
# TODO we probably shouldn't be doing this, need one source of truth
|
||||
# TODO disabling this for now
|
||||
# Labels <- read.csv(file = studyInfo, stringsAsFactors = FALSE) # sep = ","
|
||||
# Labels[expNumber, 3] <- delBGFactor
|
||||
# write.csv(Labels, file = studyInfo, row.names = FALSE)
|
||||
|
||||
# Begin User Data Selection Section
|
||||
|
||||
@@ -366,19 +370,19 @@ Raw_l_vs_K_beforeQC <-
|
||||
ggtitle("Raw L vs K before QC") +
|
||||
theme_publication_legend_right()
|
||||
|
||||
pdf(paste(outDir_QC, "Raw_L_vs_K_beforeQC.pdf", sep = ""), width = 12, height = 8)
|
||||
pdf(file.path(outDir_QC, "Raw_L_vs_K_beforeQC.pdf"), width = 12, height = 8)
|
||||
Raw_l_vs_K_beforeQC
|
||||
|
||||
dev.off()
|
||||
|
||||
pgg <- ggplotly(Raw_l_vs_K_beforeQC)
|
||||
plotly_path <- paste(outDir_QC, "Raw_L_vs_K_beforeQC.html", sep = "")
|
||||
plotly_path <- file.path(outDir_QC, "Raw_L_vs_K_beforeQC.html")
|
||||
saveWidget(pgg, file = plotly_path, selfcontained = TRUE)
|
||||
|
||||
# Set delta background tolerance based on 3 sds from the mean delta background
|
||||
Delta_Background_Tolerance <- mean(X$Delta_Backgrd) + (delBGFactor * sd(X$Delta_Backgrd))
|
||||
# Delta_Background_Tolerance <- mean(X$Delta_Backgrd)+(3*sd(X$Delta_Backgrd))
|
||||
print(paste("Delta_Background_Tolerance is", Delta_Background_Tolerance, sep = " "))
|
||||
sprintf("Delta_Background_Tolerance is %f", Delta_Background_Tolerance)
|
||||
|
||||
Plate_Analysis_Delta_Backgrd <-
|
||||
ggplot(X, aes(Scan, Delta_Backgrd, color = as.factor(Conc_Num))) +
|
||||
@@ -417,13 +421,13 @@ X_Delta_Backgrd_above_Tolerance_L_vs_K <-
|
||||
) +
|
||||
theme_publication_legend_right()
|
||||
|
||||
pdf(paste(outDir_QC, "Raw_L_vs_K_for_strains_above_deltabackgrd_threshold.pdf", sep = ""), width = 12, height = 8)
|
||||
pdf(file.path(outDir_QC, "Raw_L_vs_K_for_strains_above_deltabackgrd_threshold.pdf"), width = 12, height = 8)
|
||||
X_Delta_Backgrd_above_Tolerance_L_vs_K
|
||||
|
||||
dev.off()
|
||||
|
||||
pgg <- ggplotly(X_Delta_Backgrd_above_Tolerance_L_vs_K)
|
||||
plotly_path <- paste(outDir_QC, "Raw_L_vs_K_for_strains_above_deltabackgrd_threshold.html", sep = "")
|
||||
plotly_path <- file.path(outDir_QC, "Raw_L_vs_K_for_strains_above_deltabackgrd_threshold.html")
|
||||
saveWidget(pgg, file = plotly_path, selfcontained = TRUE)
|
||||
|
||||
# Frequency plot for all data vs. the delta_background
|
||||
@@ -434,7 +438,7 @@ DeltaBackground_Frequency_Plot <- ggplot(X, aes(Delta_Backgrd, color = as.factor
|
||||
DeltaBackground_Bar_Plot <- ggplot(X, aes(Delta_Backgrd, color = as.factor(Conc_Num))) + geom_bar() +
|
||||
ggtitle("Bar plot for Delta Background by Conc All Data") + theme_publication_legend_right()
|
||||
|
||||
pdf(file = paste(outDir_QC, "Frequency_Delta_Background.pdf", sep = ""), width = 12, height = 8)
|
||||
pdf(file.path(outDir_QC, "Frequency_Delta_Background.pdf"), width = 12, height = 8)
|
||||
print(DeltaBackground_Frequency_Plot)
|
||||
print(DeltaBackground_Bar_Plot)
|
||||
dev.off()
|
||||
@@ -568,7 +572,7 @@ Plate_Analysis_Delta_Backgrd_Box_afterQC <-
|
||||
theme_publication()
|
||||
|
||||
# Print the plate analysis data before and after QC
|
||||
pdf(file = paste(outDir_QC, "Plate_Analysis.pdf", sep = ""), width = 14, height = 9)
|
||||
pdf(file.path(outDir_QC, "Plate_Analysis.pdf"), width = 14, height = 9)
|
||||
Plate_Analysis_L
|
||||
Plate_Analysis_L_afterQC
|
||||
Plate_Analysis_K
|
||||
@@ -582,7 +586,7 @@ Plate_Analysis_Delta_Backgrd_afterQC
|
||||
dev.off()
|
||||
|
||||
# Print the plate analysis data before and after QC
|
||||
pdf(file = paste(outDir_QC, "Plate_Analysis_Boxplots.pdf", sep = ""), width = 18, height = 9)
|
||||
pdf(file.path(outDir_QC, "Plate_Analysis_Boxplots.pdf"), width = 18, height = 9)
|
||||
Plate_Analysis_L_Box
|
||||
Plate_Analysis_L_Box_afterQC
|
||||
Plate_Analysis_K_Box
|
||||
@@ -713,7 +717,7 @@ Plate_Analysis_Delta_Backgrd_Box_afterQC_Z <-
|
||||
theme_publication()
|
||||
|
||||
# Print the plate analysis data before and after QC
|
||||
pdf(file = paste(outDir_QC, "Plate_Analysis_noZeros.pdf", sep = ""), width = 14, height = 9)
|
||||
pdf(file.path(outDir_QC, "Plate_Analysis_noZeros.pdf"), width = 14, height = 9)
|
||||
Plate_Analysis_L_afterQC_Z
|
||||
Plate_Analysis_K_afterQC_Z
|
||||
Plate_Analysis_r_afterQC_Z
|
||||
@@ -722,7 +726,7 @@ Plate_Analysis_Delta_Backgrd_afterQC_Z
|
||||
dev.off()
|
||||
|
||||
# Print the plate analysis data before and after QC
|
||||
pdf(file = paste(outDir_QC, "Plate_Analysis_noZeros_Boxplots.pdf", sep = ""), width = 18, height = 9)
|
||||
pdf(file.path(outDir_QC, "Plate_Analysis_noZeros_Boxplots.pdf"), width = 18, height = 9)
|
||||
Plate_Analysis_L_Box_afterQC_Z
|
||||
Plate_Analysis_K_Box_afterQC_Z
|
||||
Plate_Analysis_r_Box_afterQC_Z
|
||||
@@ -768,7 +772,7 @@ X_stats_ALL <- ddply(
|
||||
)
|
||||
|
||||
# print(X_stats_ALL_L)
|
||||
write.csv(X_stats_ALL, file = paste(outDir, "SummaryStats_ALLSTRAINS.csv"), row.names = FALSE)
|
||||
write.csv(X_stats_ALL, file.path(outDir, "SummaryStats_ALLSTRAINS.csv"), row.names = FALSE)
|
||||
|
||||
# Part 3 - Generate summary statistics and calculate the max theoretical L value
|
||||
# Calculate the Z score at each drug conc for each deletion strain
|
||||
@@ -885,7 +889,7 @@ for (s in Background_Strains) {
|
||||
se_AUC = sd_AUC / sqrt(N - 1)
|
||||
)
|
||||
|
||||
write.csv(X_stats_BY, file = paste(outDir, "SummaryStats_BackgroundStrains.csv"), row.names = FALSE)
|
||||
write.csv(X_stats_BY, file.path(outDir, "SummaryStats_BackgroundStrains.csv"), row.names = FALSE)
|
||||
|
||||
# Calculate the max theoretical L values
|
||||
# Only look for max values when K is within 2SD of the ref strain
|
||||
@@ -964,7 +968,7 @@ for (s in Background_Strains) {
|
||||
|
||||
write.csv(
|
||||
X_stats_BY_L_within_2SD_K,
|
||||
file = paste(outDir_QC, "Max_Observed_L_Vals_for_spots_within_2SD_K.csv", sep = ""),
|
||||
file.path(outDir_QC, "Max_Observed_L_Vals_for_spots_within_2SD_K.csv"),
|
||||
row.names = FALSE
|
||||
)
|
||||
|
||||
@@ -991,13 +995,13 @@ for (s in Background_Strains) {
|
||||
ggtitle("Raw L vs K for strains falling outside 2SD of the K mean at each conc") +
|
||||
theme_publication_legend_right()
|
||||
|
||||
pdf(paste(outDir_QC, "Raw_L_vs_K_for_strains_2SD_outside_mean_K.pdf", sep = ""), width = 10, height = 8)
|
||||
pdf(file.path(outDir_QC, "Raw_L_vs_K_for_strains_2SD_outside_mean_K.pdf"), width = 10, height = 8)
|
||||
print(Outside_2SD_K_L_vs_K)
|
||||
|
||||
dev.off()
|
||||
|
||||
pgg <- ggplotly(Outside_2SD_K_L_vs_K)
|
||||
plotly_path <- paste(outDir_QC, "RawL_vs_K_for_strains_outside_2SD_K.html", sep = "")
|
||||
plotly_path <- file.path(outDir_QC, "RawL_vs_K_for_strains_outside_2SD_K.html")
|
||||
saveWidget(pgg, file = plotly_path, selfcontained = TRUE)
|
||||
|
||||
Outside_2SD_K_delta_background_vs_K <-
|
||||
@@ -1006,13 +1010,13 @@ for (s in Background_Strains) {
|
||||
ggtitle("DeltaBackground vs K for strains falling outside 2SD of the K mean at each conc") +
|
||||
theme_publication_legend_right()
|
||||
|
||||
pdf(paste(outDir_QC, "DeltaBackground_vs_K_for_strains_2SD_outside_mean_K.pdf", sep = ""), width = 10, height = 8)
|
||||
pdf(file.path(outDir_QC, "DeltaBackground_vs_K_for_strains_2SD_outside_mean_K.pdf"), width = 10, height = 8)
|
||||
Outside_2SD_K_delta_background_vs_K
|
||||
dev.off()
|
||||
pgg <- ggplotly(Outside_2SD_K_delta_background_vs_K)
|
||||
|
||||
# pgg
|
||||
plotly_path <- paste(outDir_QC, "DeltaBackground_vs_K_for_strains_outside_2SD_K.html", sep = "")
|
||||
plotly_path <- file.path(outDir_QC, "DeltaBackground_vs_K_for_strains_outside_2SD_K.html")
|
||||
saveWidget(pgg, file = plotly_path, selfcontained = TRUE)
|
||||
|
||||
# Get the background strain mean values at the no drug conc to calculate shift
|
||||
@@ -1046,7 +1050,7 @@ for (s in Background_Strains) {
|
||||
X2_temp <- X2[X2$Conc_Num == Concentration, ]
|
||||
if (Concentration == 0) {
|
||||
X2_new <- X2_temp
|
||||
print(paste("Check loop order, conc =", Concentration, sep = " "))
|
||||
sprintf("Check loop order, conc = %f", Concentration)
|
||||
}
|
||||
if (Concentration > 0) {
|
||||
try(X2_temp[X2_temp$l == 0 & !is.na(X2_temp$l), ]$l <- X_stats_BY_L_within_2SD_K$max[i])
|
||||
@@ -1055,7 +1059,7 @@ for (s in Background_Strains) {
|
||||
# X2_temp[X2_temp$K == 0, ]$K <- X_stats_ALL_K$max[i]
|
||||
# X2_temp[X2_temp$r == 0, ]$r <- X_stats_ALL_r$max[i]
|
||||
# X2_temp[X2_temp$AUC == 0, ]$AUC <- X_stats_ALL_AUC$max[i]
|
||||
print(paste("Check loop order, conc =", Concentration, sep = " "))
|
||||
sprintf("Check loop order, conc = %f", Concentration)
|
||||
X2_new <- rbind(X2_new, X2_temp)
|
||||
}
|
||||
}
|
||||
@@ -1075,13 +1079,13 @@ for (s in Background_Strains) {
|
||||
X2_RF_temp <- X2_RF[X2_RF$Conc_Num == Concentration, ]
|
||||
if (Concentration == 0) {
|
||||
X2_RF_new <- X2_RF_temp
|
||||
print(paste("Check loop order, conc =", Concentration, sep = " "))
|
||||
sprintf("Check loop order, conc = %f", Concentration)
|
||||
}
|
||||
if (Concentration > 0) {
|
||||
try(X2_RF_temp[X2_RF_temp$l == 0 & !is.na(X2_RF_temp$l), ]$l <- X_stats_BY_L_within_2SD_K$max[i])
|
||||
try(X2_temp[X2_temp$l >= X_stats_BY_L_within_2SD_K$max[i] & !is.na(X2_temp$l), ]$SM <- 1)
|
||||
try(X2_RF_temp[X2_RF_temp$l >= X_stats_BY_L_within_2SD_K$max[i] & !is.na(X2_RF_temp$l), ]$l <- X_stats_BY_L_within_2SD_K$max[i])
|
||||
print(paste("If error, refs have no L values outside theoretical max L, for REFs, conc =", Concentration, sep = " "))
|
||||
sprintf("If error, refs have no L values outside theoretical max L, for REFs, conc = %f", Concentration)
|
||||
X2_RF_new <- rbind(X2_RF_new, X2_RF_temp)
|
||||
}
|
||||
}
|
||||
@@ -1446,7 +1450,7 @@ for (s in Background_Strains) {
|
||||
InteractionScores_RF$Z_lm_AUC <- (InteractionScores_RF$lm_Score_AUC - lm_mean_AUC) / (lm_sd_AUC)
|
||||
InteractionScores_RF <- InteractionScores_RF[order(InteractionScores_RF$Z_lm_L, decreasing = TRUE), ]
|
||||
InteractionScores_RF <- InteractionScores_RF[order(InteractionScores_RF$NG, decreasing = TRUE), ]
|
||||
write.csv(InteractionScores_RF, paste(outDir, "RF_ZScores_Interaction.csv", sep = ""), row.names = FALSE)
|
||||
write.csv(InteractionScores_RF, file.path(outDir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
|
||||
|
||||
for (i in 1:num_genes_RF) {
|
||||
Gene_Sel <- unique(InteractionScores_RF$OrfRep)[i]
|
||||
@@ -1548,7 +1552,7 @@ for (s in Background_Strains) {
|
||||
}
|
||||
}
|
||||
print("Pass RF ggplot loop")
|
||||
write.csv(X_stats_interaction_ALL_RF_final, paste(outDir, "RF_ZScore_Calculations.csv", sep = ""), row.names = FALSE)
|
||||
write.csv(X_stats_interaction_ALL_RF_final, file.path(outDir, "RF_ZScore_Calculations.csv"), row.names = FALSE)
|
||||
|
||||
# Part 5 - Get Zscores for Gene deletion strains
|
||||
|
||||
@@ -1904,7 +1908,7 @@ for (s in Background_Strains) {
|
||||
InteractionScores <- InteractionScores[order(InteractionScores$NG, decreasing = TRUE), ]
|
||||
df_order_by_OrfRep <- unique(InteractionScores$OrfRep)
|
||||
# X_stats_interaction_ALL <- X_stats_interaction_ALL[order(X_stats_interaction_ALL$NG, decreasing = TRUE), ]
|
||||
write.csv(InteractionScores, paste(outDir, "ZScores_Interaction.csv", sep = ""), row.names = FALSE)
|
||||
write.csv(InteractionScores, file.path(outDir, "ZScores_Interaction.csv"), row.names = FALSE)
|
||||
|
||||
InteractionScores_deletion_enhancers_L <-
|
||||
InteractionScores[InteractionScores$Avg_Zscore_L >= 2, ]
|
||||
@@ -1957,25 +1961,25 @@ for (s in Background_Strains) {
|
||||
InteractionScores_deletion_enhancers_Avg_Zscore_Suppressors_lm_K[
|
||||
!is.na(InteractionScores_deletion_enhancers_Avg_Zscore_Suppressors_lm_K$OrfRep), ]
|
||||
write.csv(InteractionScores_deletion_enhancers_L,
|
||||
paste(outDir, "ZScores_Interaction_DeletionEnhancers_L.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionEnhancers_L.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_enhancers_K,
|
||||
paste(outDir, "ZScores_Interaction_DeletionEnhancers_K.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionEnhancers_K.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_suppressors_L,
|
||||
paste(outDir, "ZScores_Interaction_DeletionSuppressors_L.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionSuppressors_L.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_suppressors_K,
|
||||
paste(outDir, "ZScores_Interaction_DeletionSuppressors_K.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionSuppressors_K.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_enhancers_and_Suppressors_L,
|
||||
paste(outDir, "ZScores_Interaction_DeletionEnhancers_and_Suppressors_L.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionEnhancers_and_Suppressors_L.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_enhancers_and_Suppressors_K,
|
||||
paste(outDir, "ZScores_Interaction_DeletionEnhancers_and_Suppressors_K.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionEnhancers_and_Suppressors_K.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_enhancers_lm_Suppressors_AvgZscore_L,
|
||||
paste(outDir, "ZScores_Interaction_Suppressors_and_lm_Enhancers_L.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_Suppressors_and_lm_Enhancers_L.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_enhancers_Avg_Zscore_Suppressors_lm_L,
|
||||
paste(outDir, "ZScores_Interaction_Enhancers_and_lm_Suppressors_L.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_Enhancers_and_lm_Suppressors_L.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_enhancers_lm_Suppressors_AvgZscore_K,
|
||||
paste(outDir, "ZScores_Interaction_Suppressors_and_lm_Enhancers_K.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_Suppressors_and_lm_Enhancers_K.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_enhancers_Avg_Zscore_Suppressors_lm_K,
|
||||
paste(outDir, "ZScores_Interaction_Enhancers_and_lm_Suppressors_K.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_Enhancers_and_lm_Suppressors_K.csv"), row.names = FALSE)
|
||||
|
||||
# Get enhancers and suppressors for linear regression
|
||||
InteractionScores_deletion_enhancers_L_lm <-
|
||||
@@ -2010,19 +2014,19 @@ for (s in Background_Strains) {
|
||||
!is.na(InteractionScores_deletion_enhancers_and_Suppressors_K_lm$OrfRep), ]
|
||||
|
||||
write.csv(InteractionScores_deletion_enhancers_L_lm,
|
||||
paste(outDir, "ZScores_Interaction_DeletionEnhancers_L_lm.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionEnhancers_L_lm.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_enhancers_K_lm,
|
||||
paste(outDir, "ZScores_Interaction_DeletionEnhancers_K_lm.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionEnhancers_K_lm.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_suppressors_L_lm,
|
||||
paste(outDir, "ZScores_Interaction_DeletionSuppressors_L_lm.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionSuppressors_L_lm.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_suppressors_K_lm,
|
||||
paste(outDir, "ZScores_Interaction_DeletionSuppressors_K_lm.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionSuppressors_K_lm.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_enhancers_and_Suppressors_L_lm,
|
||||
paste(outDir, "ZScores_Interaction_DeletionEnhancers_and_Suppressors_L_lm.csv", sep = ""), row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionEnhancers_and_Suppressors_L_lm.csv"), row.names = FALSE)
|
||||
write.csv(InteractionScores_deletion_enhancers_and_Suppressors_K_lm,
|
||||
paste(outDir, "ZScores_Interaction_DeletionEnhancers_and_Suppressors_K_lm.csv", sep = ""), row.names = FALSE)
|
||||
write.csv(Labels, file = paste(studyInfo), row.names = FALSE)
|
||||
# write.table(Labels, file = paste("../Code/StudyInfo.txt"), sep = "\t", row.names = FALSE)
|
||||
file.path(outDir, "ZScores_Interaction_DeletionEnhancers_and_Suppressors_K_lm.csv"), row.names = FALSE)
|
||||
# write.csv(Labels, studyInfo, row.names = FALSE)
|
||||
# write.table(Labels, file.path("../Code/StudyInfo.txt"), sep = "\t", row.names = FALSE)
|
||||
|
||||
for (i in 1:num_genes) {
|
||||
Gene_Sel <- unique(InteractionScores$OrfRep)[i]
|
||||
@@ -2113,11 +2117,11 @@ for (s in Background_Strains) {
|
||||
}
|
||||
}
|
||||
print("Pass Int ggplot loop")
|
||||
write.csv(X_stats_interaction_ALL_final, paste(outDir, "ZScore_Calculations.csv", sep = ""), row.names = FALSE)
|
||||
write.csv(X_stats_interaction_ALL_final, file.path(outDir, "ZScore_Calculations.csv"), row.names = FALSE)
|
||||
|
||||
Blank <- ggplot(X2_RF) + geom_blank()
|
||||
|
||||
pdf(paste(outDir, "InteractionPlots.pdf", sep = ""), width = 16, height = 16, onefile = TRUE)
|
||||
pdf(file.path(outDir, "InteractionPlots.pdf"), width = 16, height = 16, onefile = TRUE)
|
||||
|
||||
X_stats_X2_RF <- ddply(
|
||||
X2_RF,
|
||||
@@ -2344,7 +2348,7 @@ for (s in Background_Strains) {
|
||||
|
||||
dev.off()
|
||||
|
||||
pdf(paste(outDir, "RF_InteractionPlots.pdf", sep = ""), width = 16, height = 16, onefile = TRUE)
|
||||
pdf(file.path(outDir, "RF_InteractionPlots.pdf"), width = 16, height = 16, onefile = TRUE)
|
||||
|
||||
X_stats_X2_RF <- ddply(
|
||||
X2_RF,
|
||||
@@ -2732,7 +2736,7 @@ for (s in Background_Strains) {
|
||||
geom_hline(yintercept = c(-3, 3)) + geom_point(size = 0.1, shape = 3) +
|
||||
theme_publication()
|
||||
|
||||
pdf(paste(outDir, "RankPlots.pdf", sep = ""), width = 18, height = 12, onefile = TRUE)
|
||||
pdf(file.path(outDir, "RankPlots.pdf"), width = 18, height = 12, onefile = TRUE)
|
||||
|
||||
grid.arrange(
|
||||
Rank_L_1SD,
|
||||
@@ -2866,7 +2870,7 @@ for (s in Background_Strains) {
|
||||
geom_hline(yintercept = c(-3, 3)) + geom_point(size = 0.1, shape = 3) +
|
||||
theme_publication()
|
||||
|
||||
pdf(paste(outDir, "RankPlots_lm.pdf", sep = ""), width = 18, height = 12, onefile = TRUE)
|
||||
pdf(file.path(outDir, "RankPlots_lm.pdf"), width = 18, height = 12, onefile = TRUE)
|
||||
|
||||
grid.arrange(
|
||||
Rank_L_1SD_lm,
|
||||
@@ -2916,7 +2920,7 @@ for (s in Background_Strains) {
|
||||
get_lm_AUC <- lm(X_NArm$Z_lm_AUC ~ X_NArm$Avg_Zscore_AUC)
|
||||
AUC_lm <- summary(get_lm_AUC)
|
||||
|
||||
pdf(paste(outDir, "Avg_Zscore_vs_lm_NA_rm.pdf", sep = ""), width = 16, height = 12, onefile = TRUE)
|
||||
pdf(file.path(outDir, "Avg_Zscore_vs_lm_NA_rm.pdf"), width = 16, height = 12, onefile = TRUE)
|
||||
|
||||
print(ggplot(X_NArm, aes(Avg_Zscore_L, Z_lm_L)) +
|
||||
geom_point(aes(color = Overlap), shape = 3) +
|
||||
@@ -2955,7 +2959,7 @@ for (s in Background_Strains) {
|
||||
annotate("text", x = 0, y = 0, label = paste("R-squared = ", round(L_lm$r.squared, 2))) + theme_publication_legend_right()
|
||||
|
||||
pgg <- ggplotly(lm_v_Zscore_L)
|
||||
plotly_path <- paste(outDir, "Avg_Zscore_vs_lm_NA_rm.html", sep = "")
|
||||
plotly_path <- file.path(outDir, "Avg_Zscore_vs_lm_NA_rm.html")
|
||||
saveWidget(pgg, file = plotly_path, selfcontained = TRUE)
|
||||
|
||||
X_NArm$L_Rank <- rank(X_NArm$Avg_Zscore_L)
|
||||
@@ -2978,7 +2982,7 @@ for (s in Background_Strains) {
|
||||
AUC_lm2 <- summary(get_lm_AUC2)
|
||||
num_genes_NArm2 <- (dim(X_NArm)[1]) / 2
|
||||
|
||||
pdf(paste(outDir, "Avg_Zscore_vs_lm_ranked_NA_rm.pdf", sep = ""), width = 16, height = 12, onefile = TRUE)
|
||||
pdf(file.path(outDir, "Avg_Zscore_vs_lm_ranked_NA_rm.pdf"), width = 16, height = 12, onefile = TRUE)
|
||||
|
||||
print(
|
||||
ggplot(X_NArm, aes(L_Rank, L_Rank_lm)) +
|
||||
@@ -3114,7 +3118,7 @@ for (s in Background_Strains) {
|
||||
geom_hline(yintercept = c(-3, 3)) + geom_point(size = 0.1, shape = 3) +
|
||||
theme_publication()
|
||||
|
||||
pdf(paste(outDir, "RankPlots_naRM.pdf", sep = ""), width = 18, height = 12, onefile = TRUE)
|
||||
pdf(file.path(outDir, "RankPlots_naRM.pdf"), width = 18, height = 12, onefile = TRUE)
|
||||
|
||||
grid.arrange(
|
||||
Rank_L_1SD,
|
||||
@@ -3234,7 +3238,7 @@ for (s in Background_Strains) {
|
||||
geom_hline(yintercept = c(-3, 3)) + geom_point(size = 0.1, shape = 3) +
|
||||
theme_publication()
|
||||
|
||||
pdf(paste(outDir, "RankPlots_lm_naRM.pdf", sep = ""), width = 18, height = 12, onefile = TRUE)
|
||||
pdf(file.path(outDir, "RankPlots_lm_naRM.pdf"), width = 18, height = 12, onefile = TRUE)
|
||||
|
||||
grid.arrange(
|
||||
Rank_L_1SD_lm,
|
||||
@@ -3273,7 +3277,7 @@ L_lm_5 <- summary(get_lm_5)
|
||||
get_lm_6 <- lm(X_NArm$Z_lm_AUC ~ X_NArm$Z_lm_r)
|
||||
L_lm_6 <- summary(get_lm_6)
|
||||
|
||||
pdf(file = paste(outDir, "Correlation_CPPs.pdf", sep = ""), width = 10, height = 7, onefile = TRUE)
|
||||
pdf(file.path(outDir, "Correlation_CPPs.pdf"), width = 10, height = 7, onefile = TRUE)
|
||||
|
||||
ggplot(X_NArm, aes(Z_lm_L, Z_lm_K)) +
|
||||
geom_point(shape = 3, color = "gray70") +
|
||||
@@ -3482,5 +3486,5 @@ ggplot(X_NArm, aes(Z_lm_r, Z_lm_AUC)) +
|
||||
|
||||
dev.off()
|
||||
|
||||
# write.csv(Labels, file = paste("../Code/Parameters.csv"), row.names = FALSE)
|
||||
# write.csv(Labels, file.path("../Code/Parameters.csv"), row.names = FALSE)
|
||||
timestamp()
|
||||
|
||||
Reference in New Issue
Block a user