Refactor calculate_interaction_scores again

This commit is contained in:
2024-10-03 10:16:46 -04:00
parent 8a8cdd7194
commit f6958a0126

View File

@@ -161,9 +161,8 @@ load_and_filter_data <- function(easy_results_file, sd = 3) {
)
# Set the max concentration across the whole dataframe
max_conc <- max(df$conc_num_factor, na.rm = TRUE)
df <- df %>%
mutate(max_conc = max_conc)
mutate(max_conc = max(df$conc_num_factor, na.rm = TRUE))
return(df)
}
@@ -216,172 +215,183 @@ calculate_summary_stats <- function(df, variables, group_vars) {
return(list(summary_stats = summary_stats, df_with_stats = df_joined))
}
calculate_interaction_scores <- function(df, bg_df, group_vars, overlap_threshold = 2) {
calculate_interaction_scores <- function(df, df_bg, group_vars, max_conc, overlap_threshold = 2) {
bg_df_selected <- bg_df %>%
select(OrfRep, conc_num, conc_num_factor, conc_num_factor_factor,
mean_L, mean_K, mean_r, mean_AUC, sd_L, sd_K, sd_r, sd_AUC
# Include background statistics per concentration
bg_stats <- df_bg %>%
group_by(conc_num, conc_num_factor) %>%
summarise(
WT_L = first(mean_L),
WT_K = first(mean_K),
WT_r = first(mean_r),
WT_AUC = first(mean_AUC),
WT_sd_L = first(sd_L),
WT_sd_K = first(sd_K),
WT_sd_r = first(sd_r),
WT_sd_AUC = first(sd_AUC),
.groups = "drop"
)
df <- df %>%
left_join(bg_df_selected, by = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"),
suffix = c("", "_bg"))
# Calculate total concentration variables
# Calculate total number of concentrations
total_conc_num <- length(unique(df$conc_num))
# Initial calculations
# Join background statistics to df
calculations <- df %>%
left_join(bg_stats, by = c("conc_num", "conc_num_factor"))
# Perform calculations
calculations <- calculations %>%
group_by(across(all_of(group_vars))) %>%
mutate(
N = n(),
NG = sum(NG, na.rm = TRUE),
DB = sum(DB, na.rm = TRUE),
SM = sum(SM, na.rm = TRUE),
num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
num_non_removed_concs = n_distinct(conc_num[DB != 1]),
# Raw shifts
Raw_Shift_L = mean_L - WT_L,
Raw_Shift_K = mean_K - WT_K,
Raw_Shift_r = mean_r - WT_r,
Raw_Shift_AUC = mean_AUC - WT_AUC,
# Z shifts
Z_Shift_L = Raw_Shift_L / WT_sd_L,
Z_Shift_K = Raw_Shift_K / WT_sd_K,
Z_Shift_r = Raw_Shift_r / WT_sd_r,
Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC,
# Assign WT values from the background data
WT_L = mean_L_bg,
WT_K = mean_K_bg,
WT_r = mean_r_bg,
WT_AUC = mean_AUC_bg,
WT_sd_L = sd_L_bg,
WT_sd_K = sd_K_bg,
WT_sd_r = sd_r_bg,
WT_sd_AUC = sd_AUC_bg,
# Calculate raw data
Raw_Shift_L = first(mean_L) - first(mean_L_bg),
Raw_Shift_K = first(mean_K) - first(mean_K_bg),
Raw_Shift_r = first(mean_r) - first(mean_r_bg),
Raw_Shift_AUC = first(mean_AUC) - first(mean_AUC_bg),
Z_Shift_L = Raw_Shift_L / first(sd_L_bg),
Z_Shift_K = Raw_Shift_K / first(sd_K_bg),
Z_Shift_r = Raw_Shift_r / first(sd_r_bg),
Z_Shift_AUC = Raw_Shift_AUC / first(sd_AUC_bg),
# Expected values
Exp_L = WT_L + Raw_Shift_L,
Exp_K = WT_K + Raw_Shift_K,
Exp_r = WT_r + Raw_Shift_r,
Exp_AUC = WT_AUC + Raw_Shift_AUC,
# Deltas
Delta_L = mean_L - Exp_L,
Delta_K = mean_K - Exp_K,
Delta_r = mean_r - Exp_r,
Delta_AUC = mean_AUC - Exp_AUC,
# Adjust Deltas for NG and SM
Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
# Calculate Z-scores
# Z-scores
Zscore_L = Delta_L / WT_sd_L,
Zscore_K = Delta_K / WT_sd_K,
Zscore_r = Delta_r / WT_sd_r,
Zscore_AUC = Delta_AUC / WT_sd_AUC
) %>%
ungroup()
# Fit linear models within each group
calculations <- calculations %>%
group_by(across(all_of(group_vars))) %>%
group_modify(~ {
# Perform linear models
lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
.x %>%
data <- .x
# Fit linear models
lm_L <- lm(Delta_L ~ conc_num_factor, data = data)
lm_K <- lm(Delta_K ~ conc_num_factor, data = data)
lm_r <- lm(Delta_r ~ conc_num_factor, data = data)
lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = data)
data <- data %>%
mutate(
lm_intercept_L = coef(lm_L)[1],
lm_slope_L = coef(lm_L)[2],
R_Squared_L = summary(lm_L)$r.squared,
lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
# Repeat for K, r, and AUC
lm_intercept_K = coef(lm_K)[1],
lm_slope_K = coef(lm_K)[2],
R_Squared_K = summary(lm_K)$r.squared,
lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
lm_intercept_r = coef(lm_r)[1],
lm_slope_r = coef(lm_r)[2],
R_Squared_r = summary(lm_r)$r.squared,
lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
lm_intercept_AUC = coef(lm_AUC)[1],
lm_slope_AUC = coef(lm_AUC)[2],
R_Squared_AUC = summary(lm_AUC)$r.squared,
lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
)
return(data)
}) %>%
ungroup()
# Summary statistics for lm scores
# Compute lm means and sds across all data without grouping
lm_means_sds <- calculations %>%
group_by(across(all_of(group_vars))) %>%
summarise(
mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
)
# Continue with gene Z-scores and interactions
calculations <- calculations %>%
left_join(lm_means_sds, by = group_vars) %>%
group_by(across(all_of(group_vars))) %>%
mutate(
Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
)
# Build summary stats (interactions)
# Apply global lm means and sds to calculate Z_lm_*
calculations <- calculations %>%
mutate(
Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
)
# Build interactions data frame
interactions <- calculations %>%
group_by(across(all_of(group_vars))) %>%
summarise(
Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
Avg_Zscore_L = mean(Zscore_L, na.rm = TRUE),
Avg_Zscore_K = mean(Zscore_K, na.rm = TRUE),
Avg_Zscore_r = mean(Zscore_r, na.rm = TRUE),
Avg_Zscore_AUC = mean(Zscore_AUC, na.rm = TRUE),
# Interaction Z-scores
Z_lm_L = first(Z_lm_L),
Z_lm_K = first(Z_lm_K),
Z_lm_r = first(Z_lm_r),
Z_lm_AUC = first(Z_lm_AUC),
# Raw Shifts
Raw_Shift_L = first(Raw_Shift_L),
Raw_Shift_K = first(Raw_Shift_K),
Raw_Shift_r = first(Raw_Shift_r),
Raw_Shift_AUC = first(Raw_Shift_AUC),
# Z Shifts
Z_Shift_L = first(Z_Shift_L),
Z_Shift_K = first(Z_Shift_K),
Z_Shift_r = first(Z_Shift_r),
Z_Shift_AUC = first(Z_Shift_AUC),
# NG, DB, SM values
NG = first(NG),
DB = first(DB),
SM = first(SM)
SM = first(SM),
# R Squared values
R_Squared_L = first(R_Squared_L),
R_Squared_K = first(R_Squared_K),
R_Squared_r = first(R_Squared_r),
R_Squared_AUC = first(R_Squared_AUC),
.groups = "drop"
)
# Creating the final calculations and interactions dataframes with only required columns for csv output
# Create the final calculations and interactions dataframes with required columns
calculations_df <- calculations %>%
select(
all_of(group_vars),
conc_num, conc_num_factor, conc_num_factor_factor,
N, NG, DB, SM,
mean_L, median_L, sd_L, se_L,
mean_K, median_K, sd_K, se_K,
mean_r, median_r, sd_r, se_r,
mean_AUC, median_AUC, sd_AUC, se_AUC,
mean_L, mean_K, mean_r, mean_AUC,
Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
WT_L, WT_K, WT_r, WT_AUC,
@@ -398,23 +408,15 @@ calculate_interaction_scores <- function(df, bg_df, group_vars, overlap_threshol
Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
R_Squared_L, R_Squared_K, R_Squared_r, R_Squared_AUC
)
calculations_no_overlap <- calculations %>%
# DB, NG, SM are same as in interactions, the rest may be different and need to be checked
select(-any_of(c(
"DB", "NG", "SM",
"Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
"Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
"Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
)))
# Create full_data by joining calculations_df and interactions_df
full_data <- calculations_df %>%
left_join(interactions_df, by = group_vars, suffix = c("", "_interaction"))
# Use left_join to avoid dimension mismatch issues
full_data <- calculations_no_overlap %>%
left_join(interactions, by = group_vars)
# Return full_data and the two required dataframes (calculations and interactions)
# Return the dataframes
return(list(
calculations = calculations_df,
interactions = interactions_df,
@@ -1118,7 +1120,7 @@ main <- function() {
df_stats <- calculate_summary_stats(
df = df,
variables = c("L", "K", "r", "AUC", "delta_bg"),
group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
group_vars = c("conc_num"))$df_with_stats
frequency_delta_bg_plot_configs <- list(
plots = list(
@@ -1184,7 +1186,7 @@ main <- function() {
ss <- calculate_summary_stats(
df = df_na,
variables = c("L", "K", "r", "AUC", "delta_bg"),
group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
group_vars = c("conc_num"))
df_na_ss <- ss$summary_stats
df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
@@ -1196,7 +1198,7 @@ main <- function() {
df_no_zeros_stats <- calculate_summary_stats(
df = df_no_zeros,
variables = c("L", "K", "r", "AUC", "delta_bg"),
group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
group_vars = c("conc_num")
)$df_with_stats
message("Filtering by 2SD of K")
@@ -1208,13 +1210,13 @@ main <- function() {
message("Calculating summary statistics for L within 2SD of K")
# TODO We're omitting the original z_max calculation, not sure if needed?
ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
group_vars = c("conc_num"))$summary_stats
write.csv(ss,
file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
row.names = FALSE)
message("Calculating summary statistics for L outside 2SD of K")
ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num"))
df_na_l_outside_2sd_k_stats <- ss$df_with_stats
write.csv(ss$summary_stats,
file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
@@ -1342,7 +1344,7 @@ main <- function() {
message("Calculating summary statistics for background strain")
ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
group_vars = c("OrfRep", "conc_num"))
summary_stats_bg <- ss_bg$summary_stats
df_bg_stats <- ss_bg$df_with_stats
write.csv(
@@ -1354,7 +1356,7 @@ main <- function() {
df_reference <- df_na_stats %>% # formerly X2_RF
filter(OrfRep == strain) %>%
filter(!is.na(L)) %>%
group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
group_by(conc_num) %>%
mutate(
max_l_theoretical = max(max_L, na.rm = TRUE),
L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
@@ -1366,7 +1368,7 @@ main <- function() {
df_reference_stats <- calculate_summary_stats(
df = df_reference,
variables = c("L", "K", "r", "AUC"),
group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
group_vars = c("OrfRep", "Gene", "num", "conc_num")
)$df_with_stats
reference_results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "num"))
zscore_calculations_reference <- reference_results$calculations
@@ -1377,7 +1379,7 @@ main <- function() {
df_deletion <- df_na_stats %>% # formerly X2
filter(OrfRep != strain) %>%
filter(!is.na(L)) %>%
group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
group_by(conc_num) %>%
mutate(
max_l_theoretical = max(max_L, na.rm = TRUE),
L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
@@ -1389,7 +1391,7 @@ main <- function() {
df_deletion_stats <- calculate_summary_stats(
df = df_deletion,
variables = c("L", "K", "r", "AUC"),
group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
group_vars = c("OrfRep", "Gene", "conc_num")
)$df_with_stats
deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene"))
zscore_calculations <- deletion_results$calculations