Move error bars to generate_scattter_plots()

This commit is contained in:
2024-10-06 14:58:54 -04:00
parent bee9aea866
commit faa82e0af4

View File

@@ -300,52 +300,45 @@ calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2)
ungroup() %>% # Ungroup before group_modify
group_by(across(all_of(group_vars))) %>%
group_modify(~ {
# Check if there are enough unique conc_num_factor levels to perform lm
if (length(unique(.x$conc_num_factor)) > 1) {
# Filter each column for valid data or else linear modeling will fail
valid_data_L <- .x %>% filter(!is.na(Delta_L))
valid_data_K <- .x %>% filter(!is.na(Delta_K))
valid_data_r <- .x %>% filter(!is.na(Delta_r))
valid_data_AUC <- .x %>% filter(!is.na(Delta_AUC))
# Perform linear modeling
lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
lm_L <- if (nrow(valid_data_L) > 1) lm(Delta_L ~ conc_num_factor, data = valid_data_L) else NULL
lm_K <- if (nrow(valid_data_K) > 1) lm(Delta_K ~ conc_num_factor, data = valid_data_K) else NULL
lm_r <- if (nrow(valid_data_r) > 1) lm(Delta_r ~ conc_num_factor, data = valid_data_r) else NULL
lm_AUC <- if (nrow(valid_data_AUC) > 1) lm(Delta_AUC ~ conc_num_factor, data = valid_data_AUC) else NULL
# If the model fails, set model-related values to NA
# Extract coefficients for calculations and plotting
.x %>%
mutate(
lm_intercept_L = ifelse(!is.null(lm_L), coef(lm_L)[1], NA),
lm_slope_L = ifelse(!is.null(lm_L), coef(lm_L)[2], NA),
R_Squared_L = ifelse(!is.null(lm_L), summary(lm_L)$r.squared, NA),
lm_Score_L = ifelse(!is.null(lm_L), max_conc * coef(lm_L)[2] + coef(lm_L)[1], NA),
lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
R_Squared_L = if (!is.null(lm_L)) summary(lm_L)$r.squared else NA,
lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
lm_intercept_K = ifelse(!is.null(lm_K), coef(lm_K)[1], NA),
lm_slope_K = ifelse(!is.null(lm_K), coef(lm_K)[2], NA),
R_Squared_K = ifelse(!is.null(lm_K), summary(lm_K)$r.squared, NA),
lm_Score_K = ifelse(!is.null(lm_K), max_conc * coef(lm_K)[2] + coef(lm_K)[1], NA),
lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
R_Squared_K = if (!is.null(lm_K)) summary(lm_K)$r.squared else NA,
lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
lm_intercept_r = ifelse(!is.null(lm_r), coef(lm_r)[1], NA),
lm_slope_r = ifelse(!is.null(lm_r), coef(lm_r)[2], NA),
R_Squared_r = ifelse(!is.null(lm_r), summary(lm_r)$r.squared, NA),
lm_Score_r = ifelse(!is.null(lm_r), max_conc * coef(lm_r)[2] + coef(lm_r)[1], NA),
lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
R_Squared_r = if (!is.null(lm_r)) summary(lm_r)$r.squared else NA,
lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
lm_intercept_AUC = ifelse(!is.null(lm_AUC), coef(lm_AUC)[1], NA),
lm_slope_AUC = ifelse(!is.null(lm_AUC), coef(lm_AUC)[2], NA),
R_Squared_AUC = ifelse(!is.null(lm_AUC), summary(lm_AUC)$r.squared, NA),
lm_Score_AUC = ifelse(!is.null(lm_AUC), max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1], NA)
lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
R_Squared_AUC = if (!is.null(lm_AUC)) summary(lm_AUC)$r.squared else NA,
lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
)
} else {
# If not enough conc_num_factor levels, set lm-related values to NA
.x %>%
mutate(
lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
)
}
}) %>%
ungroup()
# For interaction plot error bars
delta_means_sds <- calculations %>%
group_by(across(all_of(group_vars))) %>%
@@ -631,6 +624,93 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
}
}
# Convert ggplot to plotly for interactive version
plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
# Store both static and interactive versions
static_plots[[i]] <- plot
plotly_plots[[i]] <- plotly_plot
}
# Print the plots in the current group to the PDF
if (!is.null(grid_layout)) {
# Set grid_ncol to 1 if not specified
if (is.null(grid_layout$ncol)) {
grid_layout$ncol <- 1
}
# If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
num_plots <- length(static_plots)
nrow <- ceiling(num_plots / grid_layout$ncol)
# message("No nrow provided, automatically using nrow = ", nrow)
grid_layout$nrow <- nrow
}
total_spots <- grid_layout$nrow * grid_layout$ncol
num_plots <- length(static_plots)
if (num_plots < total_spots) {
message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
}
# Print a page of gridded plots
grid.arrange(
grobs = static_plots,
ncol = grid_layout$ncol,
nrow = grid_layout$nrow)
} else {
# Print individual plots on separate pages if no grid layout
for (plot in static_plots) {
print(plot)
}
}
}
# Close the PDF device after all plots are done
dev.off()
# Save HTML file with interactive plots if needed
out_html_file <- file.path(out_dir, paste0(filename, ".html"))
message("Saving combined HTML file: ", out_html_file)
htmltools::save_html(
htmltools::tagList(plotly_plots),
file = out_html_file
)
}
generate_scatter_plot <- function(plot, config) {
# Define the points
shape <- if (!is.null(config$shape)) config$shape else 3
size <- if (!is.null(config$size)) config$size else 1.5
position <-
if (!is.null(config$position) && config$position == "jitter") {
position_jitter(width = 0.4, height = 0.1)
} else {
"identity"
}
plot <- plot + geom_point(
shape = shape,
size = size,
position = position
)
# Add a cyan point for the reference data for correlation plots
if (!is.null(config$cyan_points) && config$cyan_points) {
plot <- plot + geom_point(
data = config$df_reference,
mapping = aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
color = "cyan",
shape = 3,
size = 0.5,
inherit.aes = FALSE
)
}
# Add error bars if specified
if (!is.null(config$error_bar) && config$error_bar) {
# Check if custom columns are provided for y_mean and y_sd, or use the defaults
@@ -703,92 +783,6 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
}
}
# Convert ggplot to plotly for interactive version
plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
# Store both static and interactive versions
static_plots[[i]] <- plot
plotly_plots[[i]] <- plotly_plot
}
# Print the plots in the current group to the PDF
if (!is.null(grid_layout)) {
# Set grid_ncol to 1 if not specified
if (is.null(grid_layout$ncol)) {
grid_layout$ncol <- 1
}
# If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
num_plots <- length(static_plots)
nrow <- ceiling(num_plots / grid_layout$ncol)
# message("No nrow provided, automatically using nrow = ", nrow)
grid_layout$nrow <- nrow
}
total_spots <- grid_layout$nrow * grid_layout$ncol
num_plots <- length(static_plots)
# if (num_plots < total_spots) {
# message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
# static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
# }
grid.arrange(
grobs = static_plots,
ncol = grid_layout$ncol,
nrow = grid_layout$nrow
)
} else {
# Print individual plots on separate pages if no grid layout
for (plot in static_plots) {
print(plot)
}
}
}
# Close the PDF device after all plots are done
dev.off()
# Save HTML file with interactive plots if needed
out_html_file <- file.path(out_dir, paste0(filename, ".html"))
message("Saving combined HTML file: ", out_html_file)
htmltools::save_html(
htmltools::tagList(plotly_plots),
file = out_html_file
)
}
generate_scatter_plot <- function(plot, config) {
# Define the points
shape <- if (!is.null(config$shape)) config$shape else 3
size <- if (!is.null(config$size)) config$size else 1.5
position <-
if (!is.null(config$position) && config$position == "jitter") {
position_jitter(width = 0.4, height = 0.1)
} else {
"identity"
}
plot <- plot + geom_point(
shape = shape,
size = size,
position = position
)
# Add a cyan point for the reference data for correlation plots
if (!is.null(config$cyan_points) && config$cyan_points) {
plot <- plot + geom_point(
data = config$df_reference,
mapping = aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
color = "cyan",
shape = 3,
size = 0.5,
inherit.aes = FALSE
)
}
# Add linear regression line if specified
if (!is.null(config$lm_line)) {
# Extract necessary values
@@ -1570,7 +1564,7 @@ main <- function() {
) %>%
filter(!is.na(L))
message("Calculating background strain summary statistics")
message("Calculating background summary statistics")
ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
summary_stats_bg <- ss_bg$summary_stats
@@ -1621,16 +1615,16 @@ main <- function() {
group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
)$df_with_stats
message("Calculating reference strain interaction scores")
reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
df_reference_interactions_joined <- reference_results$full_data
df_reference_interactions <- reference_results$interactions
write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
# message("Calculating reference strain interaction scores")
# reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
# df_reference_interactions_joined <- reference_results$full_data
# df_reference_interactions <- reference_results$interactions
# write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
# write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
message("Generating reference interaction plots")
reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
# message("Generating reference interaction plots")
# reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
# generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
df_deletion <- df_na_stats %>% # formerly X2