Pre sd/se fixes

This commit is contained in:
2024-09-06 01:22:15 -04:00
parent 40e0909a1e
commit fcc6cdd2d4

View File

@@ -183,6 +183,10 @@ process_strains <- function(df) {
# Calculate summary statistics for all variables # Calculate summary statistics for all variables
calculate_summary_stats <- function(df, variables, group_vars = c("conc_num", "conc_num_factor")) { calculate_summary_stats <- function(df, variables, group_vars = c("conc_num", "conc_num_factor")) {
# Replace 0 values with NA
df <- df %>%
mutate(across(all_of(variables), ~ifelse(. == 0, NA, .)))
# Calculate summary statistics, including a single N based on L # Calculate summary statistics, including a single N based on L
summary_stats <- df %>% summary_stats <- df %>%
group_by(across(all_of(group_vars))) %>% group_by(across(all_of(group_vars))) %>%
@@ -193,44 +197,50 @@ calculate_summary_stats <- function(df, variables, group_vars = c("conc_num", "c
median = ~median(., na.rm = TRUE), median = ~median(., na.rm = TRUE),
max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)), max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)), min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
sd = ~sd(., na.rm = TRUE), sd = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE), 0), # If N == 1, sd is set to 0
se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA) se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), 0) # If N == 1, se is set to 0
), .names = "{.fn}_{.col}") ), .names = "{.fn}_{.col}")
) )
# Get the column names from the summary_stats dataframe (excluding the group_vars)
stat_columns <- setdiff(names(summary_stats), group_vars)
# Remove existing stats columns from df if they already exist # Remove existing stats columns from df if they already exist
stat_columns <- setdiff(names(summary_stats), group_vars)
df_cleaned <- df %>% select(-any_of(stat_columns)) df_cleaned <- df %>% select(-any_of(stat_columns))
# Join the summary stats back to the cleaned original dataframe # Join the summary stats back to the cleaned original dataframe
df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars) df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
# Return both the summary stats and the updated dataframe
return(list(summary_stats = summary_stats, df_with_stats = df_with_stats)) return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
} }
# Calculate interaction scores # Calculate interaction scores
calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) { calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
if (nrow(df) == 0) {
message("Dataframe is empty after filtering")
return(NULL) # Or handle the empty dataframe case as needed
}
# Calculate total concentration variables # Calculate total concentration variables
total_conc_num <- length(unique(df$conc_num)) total_conc_num <- length(unique(df$conc_num))
num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1 num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
# Pull the background means # Pull the background means and standard deviations
print("Calculating background means") print("Calculating background means")
bg_L <- df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first() print(head(df))
bg_K <- df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first() bg_means <- list(
bg_r <- df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first() L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
bg_AUC <- df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first() K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
)
bg_sd <- list(
L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
)
bg_sd_L <- df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first() # First mutate block to calculate NG, DB, SM, and N
bg_sd_K <- df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first()
bg_sd_r <- df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first()
bg_sd_AUC <- df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
# First mutate block to calculate NG, DB, SM
print("Calculating interaction scores part 1") print("Calculating interaction scores part 1")
interaction_scores <- df %>% interaction_scores <- df %>%
group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>% group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
@@ -238,38 +248,59 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
NG = sum(NG, na.rm = TRUE), NG = sum(NG, na.rm = TRUE),
DB = sum(DB, na.rm = TRUE), DB = sum(DB, na.rm = TRUE),
SM = sum(SM, na.rm = TRUE), SM = sum(SM, na.rm = TRUE),
N = ~sum(!is.na(L)), # Count of non-NA values N = sum(!is.na(L)) # Count of non-NA values in L
) )
# Second mutate block to calculate variables and Delta using NG # Calculate Raw_Shift and Z_Shift for each variable
print("Calculating Raw_Shift and Z_Shift")
interaction_scores <- interaction_scores %>% interaction_scores <- interaction_scores %>%
mutate(across(all_of(variables), list(
mean = ~mean(., na.rm = TRUE),
median = ~median(., na.rm = TRUE),
max = ~max(., na.rm = TRUE),
min = ~min(., na.rm = TRUE),
sd = ~sd(., na.rm = TRUE),
se = ~sd(., na.rm = TRUE) / sqrt(N - 1), # Standard error calculation
Raw_Shift = ~mean(., na.rm = TRUE) - case_when(
cur_column() == "L" ~ bg_L,
cur_column() == "K" ~ bg_K,
cur_column() == "r" ~ bg_r,
cur_column() == "AUC" ~ bg_AUC
),
Z_Shift = ~ Raw_Shift / case_when(
cur_column() == "L" ~ bg_sd_L,
cur_column() == "K" ~ bg_sd_K,
cur_column() == "r" ~ bg_sd_r,
cur_column() == "AUC" ~ bg_sd_AUC
),
WT = ~mean(., na.rm = TRUE),
WT_sd = ~sd(., na.rm = TRUE),
Exp = ~ WT + Raw_Shift,
Delta = ~ WT - Exp,
Delta = if_else(NG == 1, mean - WT, Delta)
), .names = "{.fn}_{.col}")) %>%
mutate( mutate(
Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L) # disregard shift for set to max values in Z score calculation Raw_Shift_L = mean_L - bg_means$L,
Raw_Shift_K = mean_K - bg_means$K,
Raw_Shift_r = mean_r - bg_means$r,
Raw_Shift_AUC = mean_AUC - bg_means$AUC,
Z_Shift_L = Raw_Shift_L / bg_sd$L,
Z_Shift_K = Raw_Shift_K / bg_sd$K,
Z_Shift_r = Raw_Shift_r / bg_sd$r,
Z_Shift_AUC = Raw_Shift_AUC / bg_sd$AUC
)
# Calculate WT and WT_sd for each variable
print("Calculating WT and WT_sd")
interaction_scores <- interaction_scores %>%
mutate(
WT_L = mean(mean_L, na.rm = TRUE),
WT_K = mean(mean_K, na.rm = TRUE),
WT_r = mean(mean_r, na.rm = TRUE),
WT_AUC = mean(mean_AUC, na.rm = TRUE),
WT_sd_L = sd(mean_L, na.rm = TRUE),
WT_sd_K = sd(mean_K, na.rm = TRUE),
WT_sd_r = sd(mean_r, na.rm = TRUE),
WT_sd_AUC = sd(mean_AUC, na.rm = TRUE)
)
# Calculate Exp and Delta for each variable
print("Calculating Exp and Delta")
interaction_scores <- interaction_scores %>%
mutate(
Exp_L = WT_L + Raw_Shift_L,
Delta_L = WT_L - Exp_L,
Exp_K = WT_K + Raw_Shift_K,
Delta_K = WT_K - Exp_K,
Exp_r = WT_r + Raw_Shift_r,
Delta_r = WT_r - Exp_r,
Exp_AUC = WT_AUC + Raw_Shift_AUC,
Delta_AUC = WT_AUC - Exp_AUC
)
# Final adjustment to Delta for NG and SM conditions
interaction_scores <- interaction_scores %>%
mutate(
Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L) # disregard shift for set-to-max values in Z score calculation
) %>% ) %>%
ungroup() ungroup()
@@ -277,29 +308,29 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
print("Calculating interaction scores part 2") print("Calculating interaction scores part 2")
interaction_scores_all <- interaction_scores %>% interaction_scores_all <- interaction_scores %>%
group_by(across(all_of(group_vars))) %>% group_by(across(all_of(group_vars))) %>%
mutate(across(all_of(variables), list( mutate(lm_score_L = max_conc * coef(lm(Delta_L ~ conc_num_factor))[2] + coef(lm(Delta_L ~ conc_num_factor))[1],
lm_score = ~ max_conc * lm(Delta ~ conc_num_factor)$coefficients[2] + lm(Delta ~ conc_num_factor)$coefficients[1], lm_score_K = max_conc * coef(lm(Delta_K ~ conc_num_factor))[2] + coef(lm(Delta_K ~ conc_num_factor))[1],
lm_sd = ~ sd(lm_score), lm_score_r = max_conc * coef(lm(Delta_r ~ conc_num_factor))[2] + coef(lm(Delta_r ~ conc_num_factor))[1],
lm_mean = ~ mean(lm_score), lm_score_AUC = max_conc * coef(lm(Delta_AUC ~ conc_num_factor))[2] + coef(lm(Delta_AUC ~ conc_num_factor))[1]) %>%
Z_lm = ~ (lm_score - lm_mean) / lm_sd,
Sum_Zscore = ~ sum(Zscore, na.rm = TRUE)
), .names = "{.fn}_{.col}")) %>%
mutate( mutate(
Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs, Avg_Zscore_L = sum(Z_Shift_L, na.rm = TRUE) / num_non_removed_concs,
Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs, Avg_Zscore_K = sum(Z_Shift_K, na.rm = TRUE) / num_non_removed_concs,
Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1), Avg_Zscore_r = sum(Z_Shift_r, na.rm = TRUE) / (total_conc_num - 1),
Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1) Avg_Zscore_AUC = sum(Z_Shift_AUC, na.rm = TRUE) / (total_conc_num - 1)
) %>% )
# Arrange the results by Z_lm_L and NG
interaction_scores_all <- interaction_scores_all %>%
arrange(desc(lm_score_L)) %>%
arrange(desc(NG)) %>%
ungroup() ungroup()
interaction_scores_all <- interaction_scores_all %>%
arrange(desc(Z_lm_L)) %>%
arrange(desc(NG))
return(list(zscores_calculations = interaction_scores_all, zscores_interactions = interaction_scores)) return(list(zscores_calculations = interaction_scores_all, zscores_interactions = interaction_scores))
} }
interaction_plot_configs <- function(df, variable) { interaction_plot_configs <- function(df, variable) {
ylim_vals <- switch(variable, ylim_vals <- switch(variable,
"L" = c(-65, 65), "L" = c(-65, 65),
@@ -650,7 +681,7 @@ main <- function() {
write.csv(summary_stats, file = file.path(out_dir, "SummaryStats_ALLSTRAINS.csv"), row.names = FALSE) write.csv(summary_stats, file = file.path(out_dir, "SummaryStats_ALLSTRAINS.csv"), row.names = FALSE)
print("Summary stats:") print("Summary stats:")
print(head(summary_stats)) print(head(summary_stats), width = 200)
# TODO: Originally this filtered L NA's # TODO: Originally this filtered L NA's
# Let's try to avoid for now since stats have already been calculated # Let's try to avoid for now since stats have already been calculated
@@ -702,17 +733,17 @@ main <- function() {
file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")), file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
row.names = FALSE) row.names = FALSE)
print("Background summary stats:") #print("Background summary stats:")
print(head(summary_stats_bg)) #print(head(summary_stats_bg))
# Filter reference and deletion strains # Filter reference and deletion strains
# Formerly X2_RF (reference strain) # Formerly X2_RF (reference strain)
df_reference <- df_bg_stats %>% df_reference <- df_na_stats %>%
filter(OrfRep == strain) %>% filter(OrfRep == strain) %>%
mutate(SM = 0) mutate(SM = 0)
# Formerly X2 (deletion strains) # Formerly X2 (deletion strains)
df_deletion <- df_bg_stats %>% df_deletion <- df_na_stats %>%
filter(OrfRep != strain) %>% filter(OrfRep != strain) %>%
mutate(SM = 0) mutate(SM = 0)
@@ -722,7 +753,12 @@ main <- function() {
# Calculate interactions # Calculate interactions
variables <- c("L", "K", "r", "AUC") variables <- c("L", "K", "r", "AUC")
# We are recalculating some of the data here # We are recalculating some of the data here
message("Calculating interaction scores")
print("Reference strain:")
print(head(reference_strain))
reference_results <- calculate_interaction_scores(reference_strain, max_conc, variables) reference_results <- calculate_interaction_scores(reference_strain, max_conc, variables)
print("Deletion strains:")
print(head(deletion_strains))
deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, variables) deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, variables)
zscores_calculations_reference <- reference_results$zscores_calculations zscores_calculations_reference <- reference_results$zscores_calculations