calculate_interaction_zscores.R 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. stats <- df %>%
  177. mutate(
  178. WT_L = mean_L,
  179. WT_K = mean_K,
  180. WT_r = mean_r,
  181. WT_AUC = mean_AUC,
  182. WT_sd_L = sd_L,
  183. WT_sd_K = sd_K,
  184. WT_sd_r = sd_r,
  185. WT_sd_AUC = sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  197. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. stats <- stats %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. stats <- stats %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Exp_K = WT_K + Raw_Shift_K,
  219. Exp_r = WT_r + Raw_Shift_r,
  220. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  221. Delta_L = mean_L - Exp_L,
  222. Delta_K = mean_K - Exp_K,
  223. Delta_r = mean_r - Exp_r,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. stats <- stats %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. stats <- stats %>%
  235. mutate(
  236. Zscore_L = Delta_L / WT_sd_L,
  237. Zscore_K = Delta_K / WT_sd_K,
  238. Zscore_r = Delta_r / WT_sd_r,
  239. Zscore_AUC = Delta_AUC / WT_sd_AUC
  240. )
  241. # Create linear models with error handling for missing/insufficient data
  242. # This part is a PITA so best to contain it in its own function
  243. calculate_lm_values <- function(y, x) {
  244. if (length(unique(x)) > 1 && sum(!is.na(y)) > 1) {
  245. # Suppress warnings only for perfect fits or similar issues
  246. model <- suppressWarnings(lm(y ~ x))
  247. coefficients <- coef(model)
  248. r_squared <- tryCatch({
  249. summary(model)$r.squared
  250. }, warning = function(w) {
  251. NA # Set r-squared to NA if there's a warning
  252. })
  253. return(list(intercept = coefficients[1], slope = coefficients[2], r_squared = r_squared))
  254. } else {
  255. return(list(intercept = NA, slope = NA, r_squared = NA))
  256. }
  257. }
  258. lms <- stats %>%
  259. group_by(across(all_of(group_vars))) %>%
  260. reframe(
  261. lm_L = list(calculate_lm_values(Delta_L, conc_num_factor)),
  262. lm_K = list(calculate_lm_values(Delta_K, conc_num_factor)),
  263. lm_r = list(calculate_lm_values(Delta_r, conc_num_factor)),
  264. lm_AUC = list(calculate_lm_values(Delta_AUC, conc_num_factor))
  265. )
  266. lms <- lms %>%
  267. mutate(
  268. lm_L_intercept = sapply(lm_L, `[[`, "intercept"),
  269. lm_L_slope = sapply(lm_L, `[[`, "slope"),
  270. lm_L_r_squared = sapply(lm_L, `[[`, "r_squared"),
  271. lm_K_intercept = sapply(lm_K, `[[`, "intercept"),
  272. lm_K_slope = sapply(lm_K, `[[`, "slope"),
  273. lm_K_r_squared = sapply(lm_K, `[[`, "r_squared"),
  274. lm_r_intercept = sapply(lm_r, `[[`, "intercept"),
  275. lm_r_slope = sapply(lm_r, `[[`, "slope"),
  276. lm_r_r_squared = sapply(lm_r, `[[`, "r_squared"),
  277. lm_AUC_intercept = sapply(lm_AUC, `[[`, "intercept"),
  278. lm_AUC_slope = sapply(lm_AUC, `[[`, "slope"),
  279. lm_AUC_r_squared = sapply(lm_AUC, `[[`, "r_squared")
  280. ) %>%
  281. select(-lm_L, -lm_K, -lm_r, -lm_AUC)
  282. stats <- stats %>%
  283. left_join(lms, by = group_vars) %>%
  284. mutate(
  285. lm_Score_L = lm_L_slope * max_conc + lm_L_intercept,
  286. lm_Score_K = lm_K_slope * max_conc + lm_K_intercept,
  287. lm_Score_r = lm_r_slope * max_conc + lm_r_intercept,
  288. lm_Score_AUC = lm_AUC_slope * max_conc + lm_AUC_intercept,
  289. R_Squared_L = lm_L_r_squared,
  290. R_Squared_K = lm_K_r_squared,
  291. R_Squared_r = lm_r_r_squared,
  292. R_Squared_AUC = lm_AUC_r_squared,
  293. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  294. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  295. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  296. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  297. )
  298. stats <- stats %>%
  299. mutate(
  300. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  301. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  302. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  303. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  304. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  305. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  306. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  307. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  308. )
  309. # Declare column order for output
  310. calculations <- stats %>%
  311. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  312. "mean_L", "mean_K", "mean_r", "mean_AUC",
  313. "median_L", "median_K", "median_r", "median_AUC",
  314. "sd_L", "sd_K", "sd_r", "sd_AUC",
  315. "se_L", "se_K", "se_r", "se_AUC",
  316. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  317. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  318. "WT_L", "WT_K", "WT_r", "WT_AUC",
  319. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  320. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  321. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  322. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  323. "NG", "SM", "DB") %>%
  324. ungroup()
  325. interactions <- stats %>%
  326. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  327. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  328. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  329. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  330. "Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
  331. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  332. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  333. "NG", "SM", "DB") %>%
  334. arrange(desc(lm_Score_L)) %>%
  335. arrange(desc(NG)) %>%
  336. ungroup()
  337. return(list(calculations = calculations, interactions = interactions))
  338. }
  339. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  340. message("Generating html and pdf plots for: ", file_name)
  341. plots <- lapply(plot_configs, function(config) {
  342. df <- config$df
  343. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  344. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  345. # Plots are testy about missing aesthetics, so handle them here
  346. aes_mapping <- if (is.null(config$color_var)) {
  347. if (is.null(config$y_var)) {
  348. aes(x = !!sym(config$x_var))
  349. } else {
  350. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  351. }
  352. } else {
  353. if (is.null(config$y_var)) {
  354. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  355. } else {
  356. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  357. }
  358. }
  359. plot <- ggplot(df, aes_mapping)
  360. # Use appropriate helper function based on plot type
  361. plot <- switch(config$plot_type,
  362. "scatter" = generate_scatter_plot(plot, config),
  363. "rank" = generate_rank_plot(plot, config),
  364. "correlation" = generate_correlation_plot(plot, config),
  365. "box" = generate_box_plot(plot, config),
  366. "density" = plot + geom_density(),
  367. "bar" = plot + geom_bar(),
  368. plot # default case if no type matches
  369. )
  370. return(plot)
  371. })
  372. # PDF saving logic
  373. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  374. lapply(plots, print)
  375. dev.off()
  376. # HTML saving logic
  377. plotly_plots <- lapply(plots, function(plot) {
  378. config <- plot$labels$config
  379. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  380. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  381. } else {
  382. ggplotly(plot, tooltip = "text")
  383. }
  384. })
  385. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  386. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  387. }
  388. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  389. # Determine the base aesthetics
  390. aes_params <- aes(
  391. x = !!sym(config$x_var),
  392. y = !!sym(config$y_var),
  393. color = as.factor(!!sym(config$color_var)))
  394. # Add the interactive `text` aesthetic if `interactive` is TRUE
  395. if (interactive) {
  396. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  397. aes_params$text <- paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)
  398. } else if (!is.null(config$gene_point) && config$gene_point) {
  399. aes_params$text <- paste("ORF:", OrfRep, "Gene:", Gene)
  400. }
  401. }
  402. # Add the base geom_point layer
  403. plot <- plot + geom_point(
  404. aes_params, shape = config$shape %||% 3,
  405. size = config$size %||% 0.2,
  406. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  407. # Add smooth line if specified
  408. if (!is.null(config$add_smooth) && config$add_smooth) {
  409. plot <- if (!is.null(config$lm_line)) {
  410. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  411. } else {
  412. plot + geom_smooth(method = "lm", se = FALSE)
  413. }
  414. }
  415. # Add error bars if specified
  416. if (!is.null(config$error_bar) && config$error_bar) {
  417. y_mean_col <- paste0("mean_", config$y_var)
  418. y_sd_col <- paste0("sd_", config$y_var)
  419. plot <- plot + geom_errorbar(aes(
  420. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  421. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  422. ), alpha = 0.3)
  423. }
  424. # Add x-axis customization if specified
  425. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  426. plot <- plot + scale_x_continuous(
  427. name = config$x_label,
  428. breaks = config$x_breaks,
  429. labels = config$x_labels)
  430. }
  431. # Add y-axis limits if specified
  432. if (!is.null(config$ylim_vals)) {
  433. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  434. }
  435. # Add Cartesian coordinates customization if specified
  436. if (!is.null(config$coord_cartesian)) {
  437. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  438. }
  439. return(plot)
  440. }
  441. generate_rank_plot <- function(plot, config) {
  442. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  443. if (!is.null(config$sd_band)) {
  444. for (i in seq_len(config$sd_band)) {
  445. plot <- plot +
  446. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  447. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  448. geom_hline(yintercept = c(-i, i), color = "gray")
  449. }
  450. }
  451. if (!is.null(config$enhancer_label)) {
  452. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  453. }
  454. if (!is.null(config$suppressor_label)) {
  455. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  456. }
  457. return(plot)
  458. }
  459. generate_correlation_plot <- function(plot, config) {
  460. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  461. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  462. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  463. if (!is.null(config$rect)) {
  464. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  465. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  466. }
  467. return(plot)
  468. }
  469. generate_box_plot <- function(plot, config) {
  470. plot <- plot + geom_boxplot()
  471. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  472. plot <- plot + scale_x_discrete(
  473. name = config$x_label,
  474. breaks = config$x_breaks,
  475. labels = config$x_labels
  476. )
  477. }
  478. if (!is.null(config$coord_cartesian)) {
  479. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  480. }
  481. return(plot)
  482. }
  483. generate_interaction_plot_configs <- function(df, variables) {
  484. configs <- list()
  485. # Define common y-limits and other attributes for each variable dynamically
  486. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  487. # Define annotation positions based on the variable being plotted
  488. annotation_positions <- list(
  489. L = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  490. K = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  491. r = list(ZShift = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  492. AUC = list(ZShift = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  493. )
  494. # Define which annotations to include for each plot
  495. annotation_labels <- list(
  496. ZShift = function(df, var) {
  497. val <- df[[paste0("Z_Shift_", var)]]
  498. if (is.numeric(val)) {
  499. paste("ZShift =", round(val, 2))
  500. } else {
  501. paste("ZShift =", val)
  502. }
  503. },
  504. lm_ZScore = function(df, var) {
  505. val <- df[[paste0("Z_lm_", var)]]
  506. if (is.numeric(val)) {
  507. paste("lm ZScore =", round(val, 2))
  508. } else {
  509. paste("lm ZScore =", val)
  510. }
  511. },
  512. NG = function(df, var) paste("NG =", df$NG),
  513. DB = function(df, var) paste("DB =", df$DB),
  514. SM = function(df, var) paste("SM =", df$SM)
  515. )
  516. for (variable in variables) {
  517. # Dynamically generate the names of the columns
  518. var_info <- list(
  519. ylim = limits_map[[variable]],
  520. lm_model = df[[paste0("lm_", variable)]][[1]], # Access the precomputed linear model
  521. sd_col = paste0("WT_sd_", variable),
  522. delta_var = paste0("Delta_", variable)
  523. )
  524. # Extract the precomputed linear model coefficients
  525. lm_line <- list(
  526. intercept = coef(var_info$lm_model)[1],
  527. slope = coef(var_info$lm_model)[2]
  528. )
  529. # Dynamically create annotations based on variable
  530. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  531. y_pos <- annotation_positions[[variable]][[annotation_name]]
  532. label <- annotation_labels[[annotation_name]](df, variable)
  533. list(x = 1, y = y_pos, label = label)
  534. })
  535. # Add scatter plot configuration for this variable
  536. configs[[length(configs) + 1]] <- list(
  537. df = df,
  538. x_var = "conc_num_factor",
  539. y_var = var_info$delta_var,
  540. plot_type = "scatter",
  541. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  542. ylim_vals = var_info$ylim,
  543. annotations = annotations,
  544. lm_line = lm_line, # Precomputed linear model
  545. error_bar = TRUE,
  546. x_breaks = unique(df$conc_num_factor),
  547. x_labels = unique(as.character(df$conc_num)),
  548. x_label = unique(df$Drug[1]),
  549. shape = 3,
  550. size = 0.6,
  551. position = "jitter",
  552. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  553. )
  554. # Add box plot configuration for this variable
  555. configs[[length(configs) + 1]] <- list(
  556. df = df,
  557. x_var = "conc_num_factor",
  558. y_var = variable,
  559. plot_type = "box",
  560. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  561. ylim_vals = var_info$ylim,
  562. annotations = annotations,
  563. error_bar = FALSE,
  564. x_breaks = unique(df$conc_num_factor),
  565. x_labels = unique(as.character(df$conc_num)),
  566. x_label = unique(df$Drug[1]),
  567. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  568. )
  569. }
  570. return(configs)
  571. }
  572. # Adjust missing values and calculate ranks
  573. adjust_missing_and_rank <- function(df, variables) {
  574. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  575. df <- df %>%
  576. mutate(across(all_of(variables), list(
  577. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  578. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  579. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  580. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  581. ), .names = "{fn}_{col}"))
  582. return(df)
  583. }
  584. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  585. configs <- list()
  586. # Adjust titles for _lm plots if is_lm is TRUE
  587. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  588. # Annotated version (with text)
  589. for (sd_band in c(1, 2, 3)) {
  590. configs[[length(configs) + 1]] <- list(
  591. df = df,
  592. x_var = rank_var,
  593. y_var = zscore_var,
  594. plot_type = "rank",
  595. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  596. sd_band = sd_band,
  597. enhancer_label = list(
  598. x = nrow(df) / 2, y = 10,
  599. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  600. ),
  601. suppressor_label = list(
  602. x = nrow(df) / 2, y = -10,
  603. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  604. ),
  605. shape = 3,
  606. size = 0.1
  607. )
  608. }
  609. # Non-annotated version (_notext)
  610. for (sd_band in c(1, 2, 3)) {
  611. configs[[length(configs) + 1]] <- list(
  612. df = df,
  613. x_var = rank_var,
  614. y_var = zscore_var,
  615. plot_type = "rank",
  616. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  617. sd_band = sd_band,
  618. enhancer_label = NULL, # No annotations for _notext
  619. suppressor_label = NULL, # No annotations for _notext
  620. shape = 3,
  621. size = 0.1,
  622. position = "jitter"
  623. )
  624. }
  625. return(configs)
  626. }
  627. generate_correlation_plot_configs <- function(df, variables) {
  628. configs <- list()
  629. for (variable in variables) {
  630. z_lm_var <- paste0("Z_lm_", variable)
  631. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  632. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  633. configs[[length(configs) + 1]] <- list(
  634. df = df,
  635. x_var = avg_zscore_var,
  636. y_var = z_lm_var,
  637. plot_type = "correlation",
  638. title = paste("Avg Zscore vs lm", variable),
  639. color_var = "Overlap",
  640. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  641. shape = 3,
  642. geom_smooth = TRUE,
  643. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  644. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  645. legend_position = "right"
  646. )
  647. }
  648. return(configs)
  649. }
  650. main <- function() {
  651. lapply(names(args$experiments), function(exp_name) {
  652. exp <- args$experiments[[exp_name]]
  653. exp_path <- exp$path
  654. exp_sd <- exp$sd
  655. out_dir <- file.path(exp_path, "zscores")
  656. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  657. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  658. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  659. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  660. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  661. orf_group_vars <- c("OrfRep", "Gene", "num")
  662. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  663. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  664. message("Loading and filtering data")
  665. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  666. df <- update_gene_names(df, args$sgd_gene_list)
  667. df <- as_tibble(df)
  668. # Filter rows that are above tolerance for quality control plots
  669. df_above_tolerance <- df %>% filter(DB == 1)
  670. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  671. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  672. # Remove rows with 0 values in L
  673. df_no_zeros <- df_na %>% filter(L > 0)
  674. # Save some constants
  675. max_conc <- max(df$conc_num_factor)
  676. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  677. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  678. message("Calculating summary statistics before quality control")
  679. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  680. # df_ss <- ss$summary_stats
  681. df_stats <- ss$df_with_stats
  682. df_filtered_stats <- df_stats %>%
  683. {
  684. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  685. if (nrow(non_finite_rows) > 0) {
  686. message("Removed the following non-finite rows:")
  687. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  688. }
  689. filter(., if_all(c(L), is.finite))
  690. }
  691. message("Calculating summary statistics after quality control")
  692. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  693. df_na_ss <- ss$summary_stats
  694. df_na_stats <- ss$df_with_stats
  695. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  696. # Filter out non-finite rows for plotting
  697. df_na_filtered_stats <- df_na_stats %>%
  698. {
  699. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  700. if (nrow(non_finite_rows) > 0) {
  701. message("Removed the following non-finite rows:")
  702. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  703. }
  704. filter(., if_all(c(L), is.finite))
  705. }
  706. message("Calculating summary statistics after quality control excluding zero values")
  707. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  708. df_no_zeros_stats <- ss$df_with_stats
  709. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  710. {
  711. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  712. if (nrow(non_finite_rows) > 0) {
  713. message("Removed the following non-finite rows:")
  714. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  715. }
  716. filter(., if_all(c(L), is.finite))
  717. }
  718. message("Filtering by 2SD of K")
  719. df_na_within_2sd_k <- df_na_stats %>%
  720. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  721. df_na_outside_2sd_k <- df_na_stats %>%
  722. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  723. message("Calculating summary statistics for L within 2SD of K")
  724. # TODO We're omitting the original z_max calculation, not sure if needed?
  725. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  726. l_within_2sd_k_ss <- ss$summary_stats
  727. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  728. write.csv(l_within_2sd_k_ss,
  729. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  730. message("Calculating summary statistics for L outside 2SD of K")
  731. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  732. l_outside_2sd_k_ss <- ss$summary_stats
  733. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  734. write.csv(l_outside_2sd_k_ss,
  735. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  736. # Each plots list corresponds to a file
  737. message("Generating quality control plot configurations")
  738. l_vs_k_plots <- list(
  739. list(
  740. df = df,
  741. x_var = "L",
  742. y_var = "K",
  743. plot_type = "scatter",
  744. delta_bg_point = TRUE,
  745. title = "Raw L vs K before quality control",
  746. color_var = "conc_num",
  747. error_bar = FALSE,
  748. legend_position = "right"
  749. )
  750. )
  751. frequency_delta_bg_plots <- list(
  752. list(
  753. df = df_filtered_stats,
  754. x_var = "delta_bg",
  755. y_var = NULL,
  756. plot_type = "density",
  757. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  758. color_var = "conc_num",
  759. x_label = "Delta Background",
  760. y_label = "Density",
  761. error_bar = FALSE,
  762. legend_position = "right"),
  763. list(
  764. df = df_filtered_stats,
  765. x_var = "delta_bg",
  766. y_var = NULL,
  767. plot_type = "bar",
  768. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  769. color_var = "conc_num",
  770. x_label = "Delta Background",
  771. y_label = "Count",
  772. error_bar = FALSE,
  773. legend_position = "right")
  774. )
  775. above_threshold_plots <- list(
  776. list(
  777. df = df_above_tolerance,
  778. x_var = "L",
  779. y_var = "K",
  780. plot_type = "scatter",
  781. delta_bg_point = TRUE,
  782. title = paste("Raw L vs K for strains above Delta Background threshold of",
  783. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  784. color_var = "conc_num",
  785. position = "jitter",
  786. annotations = list(
  787. x = l_half_median,
  788. y = k_half_median,
  789. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  790. ),
  791. error_bar = FALSE,
  792. legend_position = "right"
  793. )
  794. )
  795. plate_analysis_plots <- list()
  796. for (var in summary_vars) {
  797. for (stage in c("before", "after")) {
  798. if (stage == "before") {
  799. df_plot <- df_filtered_stats
  800. } else {
  801. df_plot <- df_na_filtered_stats
  802. }
  803. config <- list(
  804. df = df_plot,
  805. x_var = "scan",
  806. y_var = var,
  807. plot_type = "scatter",
  808. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  809. error_bar = TRUE,
  810. color_var = "conc_num",
  811. position = "jitter")
  812. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  813. }
  814. }
  815. plate_analysis_boxplots <- list()
  816. for (var in summary_vars) {
  817. for (stage in c("before", "after")) {
  818. if (stage == "before") {
  819. df_plot <- df_filtered_stats
  820. } else {
  821. df_plot <- df_na_filtered_stats
  822. }
  823. config <- list(
  824. df = df_plot,
  825. x_var = "scan",
  826. y_var = var,
  827. plot_type = "box",
  828. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  829. error_bar = FALSE,
  830. color_var = "conc_num")
  831. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  832. }
  833. }
  834. plate_analysis_no_zeros_plots <- list()
  835. for (var in summary_vars) {
  836. config <- list(
  837. df = df_no_zeros_filtered_stats,
  838. x_var = "scan",
  839. y_var = var,
  840. plot_type = "scatter",
  841. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  842. error_bar = TRUE,
  843. color_var = "conc_num",
  844. position = "jitter")
  845. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  846. }
  847. plate_analysis_no_zeros_boxplots <- list()
  848. for (var in summary_vars) {
  849. config <- list(
  850. df = df_no_zeros_filtered_stats,
  851. x_var = "scan",
  852. y_var = var,
  853. plot_type = "box",
  854. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  855. error_bar = FALSE,
  856. color_var = "conc_num"
  857. )
  858. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  859. }
  860. l_outside_2sd_k_plots <- list(
  861. list(
  862. df = df_na_l_outside_2sd_k_stats,
  863. x_var = "L",
  864. y_var = "K",
  865. plot_type = "scatter",
  866. delta_bg_point = TRUE,
  867. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  868. color_var = "conc_num",
  869. position = "jitter",
  870. legend_position = "right"
  871. )
  872. )
  873. delta_bg_outside_2sd_k_plots <- list(
  874. list(
  875. df = df_na_l_outside_2sd_k_stats,
  876. x_var = "delta_bg",
  877. y_var = "K",
  878. plot_type = "scatter",
  879. gene_point = TRUE,
  880. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  881. color_var = "conc_num",
  882. position = "jitter",
  883. legend_position = "right"
  884. )
  885. )
  886. message("Generating quality control plots")
  887. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  888. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  889. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  890. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  891. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  892. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  893. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  894. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  895. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  896. # Clean up
  897. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  898. gc()
  899. # TODO: Originally this filtered L NA's
  900. # Let's try to avoid for now since stats have already been calculated
  901. # Process background strains
  902. bg_strains <- c("YDL227C")
  903. lapply(bg_strains, function(strain) {
  904. message("Processing background strain: ", strain)
  905. # Handle missing data by setting zero values to NA
  906. # and then removing any rows with NA in L col
  907. df_bg <- df_na %>%
  908. filter(OrfRep == strain) %>%
  909. mutate(
  910. L = if_else(L == 0, NA, L),
  911. K = if_else(K == 0, NA, K),
  912. r = if_else(r == 0, NA, r),
  913. AUC = if_else(AUC == 0, NA, AUC)
  914. ) %>%
  915. filter(!is.na(L))
  916. # Recalculate summary statistics for the background strain
  917. message("Calculating summary statistics for background strain")
  918. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  919. summary_stats_bg <- ss_bg$summary_stats
  920. # df_bg_stats <- ss_bg$df_with_stats
  921. write.csv(summary_stats_bg,
  922. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  923. row.names = FALSE)
  924. # Filter reference and deletion strains
  925. # Formerly X2_RF (reference strains)
  926. df_reference <- df_na_stats %>%
  927. filter(OrfRep == strain) %>%
  928. mutate(SM = 0)
  929. # Formerly X2 (deletion strains)
  930. df_deletion <- df_na_stats %>%
  931. filter(OrfRep != strain) %>%
  932. mutate(SM = 0)
  933. # Set the missing values to the highest theoretical value at each drug conc for L
  934. # Leave other values as 0 for the max/min
  935. reference_strain <- df_reference %>%
  936. group_by(conc_num) %>%
  937. mutate(
  938. max_l_theoretical = max(max_L, na.rm = TRUE),
  939. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  940. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  941. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  942. ungroup()
  943. # Ditto for deletion strains
  944. deletion_strains <- df_deletion %>%
  945. group_by(conc_num) %>%
  946. mutate(
  947. max_l_theoretical = max(max_L, na.rm = TRUE),
  948. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  949. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  950. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  951. ungroup()
  952. # Calculate interactions
  953. interaction_vars <- c("L", "K", "r", "AUC")
  954. message("Calculating interaction scores")
  955. # print("Reference strain:")
  956. # print(head(reference_strain))
  957. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  958. # print("Deletion strains:")
  959. # print(head(deletion_strains))
  960. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  961. zscores_calculations_reference <- reference_results$calculations
  962. zscores_interactions_reference <- reference_results$interactions
  963. zscores_calculations <- deletion_results$calculations
  964. zscores_interactions <- deletion_results$interactions
  965. # Writing Z-Scores to file
  966. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  967. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  968. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  969. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  970. # Create interaction plots
  971. message("Generating interaction plot configurations")
  972. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  973. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  974. message("Generating interaction plots")
  975. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  976. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  977. # Define conditions for enhancers and suppressors
  978. # TODO Add to study config file?
  979. threshold <- 2
  980. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  981. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  982. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  983. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  984. # Subset data
  985. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  986. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  987. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  988. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  989. # Save enhancers and suppressors
  990. message("Writing enhancer/suppressor csv files")
  991. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  992. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  993. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  994. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  995. # Combine conditions for enhancers and suppressors
  996. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  997. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  998. # Save combined enhancers and suppressors
  999. write.csv(enhancers_and_suppressors_L,
  1000. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1001. write.csv(enhancers_and_suppressors_K,
  1002. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1003. # Handle linear model based enhancers and suppressors
  1004. lm_threshold <- 2
  1005. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1006. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1007. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1008. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1009. # Save linear model based enhancers and suppressors
  1010. message("Writing linear model enhancer/suppressor csv files")
  1011. write.csv(enhancers_lm_L,
  1012. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1013. write.csv(suppressors_lm_L,
  1014. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1015. write.csv(enhancers_lm_K,
  1016. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1017. write.csv(suppressors_lm_K,
  1018. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1019. # TODO needs explanation
  1020. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  1021. rank_plot_configs <- c(
  1022. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  1023. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  1024. )
  1025. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1026. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1027. rank_lm_plot_config <- c(
  1028. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1029. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1030. )
  1031. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1032. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1033. # Formerly X_NArm
  1034. zscores_interactions_filtered <- zscores_interactions %>%
  1035. group_by(across(all_of(orf_group_vars))) %>%
  1036. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1037. # Final filtered correlation calculations and plots
  1038. lm_results <- zscores_interactions_filtered %>%
  1039. summarise(
  1040. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1041. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1042. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1043. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1044. )
  1045. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1046. left_join(lm_results, by = orf_group_vars) %>%
  1047. mutate(
  1048. Overlap = case_when(
  1049. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1050. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1051. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1052. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1053. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1054. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1055. TRUE ~ "No Effect"
  1056. )
  1057. ) %>%
  1058. ungroup()
  1059. rank_plot_configs <- c(
  1060. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1061. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1062. )
  1063. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1064. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1065. rank_lm_plot_configs <- c(
  1066. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1067. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1068. )
  1069. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1070. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1071. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1072. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1073. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1074. })
  1075. })
  1076. }
  1077. main()