calculate_interaction_zscores.R 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. stats <- df %>%
  177. mutate(
  178. WT_L = mean_L,
  179. WT_K = mean_K,
  180. WT_r = mean_r,
  181. WT_AUC = mean_AUC,
  182. WT_sd_L = sd_L,
  183. WT_sd_K = sd_K,
  184. WT_sd_r = sd_r,
  185. WT_sd_AUC = sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  197. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. stats <- stats %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. stats <- stats %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Exp_K = WT_K + Raw_Shift_K,
  219. Exp_r = WT_r + Raw_Shift_r,
  220. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  221. Delta_L = mean_L - Exp_L,
  222. Delta_K = mean_K - Exp_K,
  223. Delta_r = mean_r - Exp_r,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. stats <- stats %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. stats <- stats %>%
  235. mutate(
  236. Zscore_L = Delta_L / WT_sd_L,
  237. Zscore_K = Delta_K / WT_sd_K,
  238. Zscore_r = Delta_r / WT_sd_r,
  239. Zscore_AUC = Delta_AUC / WT_sd_AUC
  240. )
  241. # Create linear models with error handling for missing/insufficient data
  242. lms <- stats %>%
  243. summarise(
  244. lm_L = if (n_distinct(conc_num_factor) > 1 && sum(!is.na(Delta_L)) > 1) list(lm(Delta_L ~ conc_num_factor)) else NULL,
  245. lm_K = if (n_distinct(conc_num_factor) > 1 && sum(!is.na(Delta_K)) > 1) list(lm(Delta_K ~ conc_num_factor)) else NULL,
  246. lm_r = if (n_distinct(conc_num_factor) > 1 && sum(!is.na(Delta_r)) > 1) list(lm(Delta_r ~ conc_num_factor)) else NULL,
  247. lm_AUC = if (n_distinct(conc_num_factor) > 1 && sum(!is.na(Delta_AUC)) > 1) list(lm(Delta_AUC ~ conc_num_factor)) else NULL
  248. )
  249. stats <- stats %>%
  250. left_join(lms, by = group_vars) %>%
  251. mutate(
  252. lm_Score_L = sapply(lm_L, function(model) if (!is.na(model)) coef(model)[2] * max_conc + coef(model)[1] else NA),
  253. lm_Score_K = sapply(lm_K, function(model) if (!is.na(model)) coef(model)[2] * max_conc + coef(model)[1] else NA),
  254. lm_Score_r = sapply(lm_r, function(model) if (!is.na(model)) coef(model)[2] * max_conc + coef(model)[1] else NA),
  255. lm_Score_AUC = sapply(lm_AUC, function(model) if (!is.na(model)) coef(model)[2] * max_conc + coef(model)[1] else NA),
  256. R_Squared_L = sapply(lm_L, function(model) if (!is.na(model)) summary(model)$r.squared else NA),
  257. R_Squared_K = sapply(lm_K, function(model) if (!is.na(model)) summary(model)$r.squared else NA),
  258. R_Squared_r = sapply(lm_r, function(model) if (!is.na(model)) summary(model)$r.squared else NA),
  259. R_Squared_AUC = sapply(lm_AUC, function(model) if (!is.na(model)) summary(model)$r.squared else NA),
  260. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  261. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  262. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  263. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  264. )
  265. stats <- stats %>%
  266. mutate(
  267. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  268. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  269. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  270. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  271. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  272. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  273. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  274. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  275. )
  276. # Declare column order for output
  277. calculations <- stats %>%
  278. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  279. "mean_L", "mean_K", "mean_r", "mean_AUC",
  280. "median_L", "median_K", "median_r", "median_AUC",
  281. "sd_L", "sd_K", "sd_r", "sd_AUC",
  282. "se_L", "se_K", "se_r", "se_AUC",
  283. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  284. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  285. "WT_L", "WT_K", "WT_r", "WT_AUC",
  286. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  287. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  288. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  289. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  290. "NG", "SM", "DB") %>%
  291. ungroup()
  292. interactions <- stats %>%
  293. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  294. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  295. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  296. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  297. "Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
  298. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  299. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  300. "NG", "SM", "DB") %>%
  301. arrange(desc(lm_Score_L)) %>%
  302. arrange(desc(NG)) %>%
  303. ungroup()
  304. return(list(calculations = calculations, interactions = interactions))
  305. }
  306. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  307. message("Generating html and pdf plots for: ", file_name, ".pdf|html")
  308. plots <- lapply(plot_configs, function(config) {
  309. df <- config$df
  310. print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  311. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 100)
  312. # Define aes mapping based on the presence of y_var
  313. aes_mapping <- if (is.null(config$y_var)) {
  314. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  315. } else {
  316. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  317. }
  318. plot <- ggplot(df, aes_mapping)
  319. # Use appropriate helper function based on plot type
  320. plot <- switch(config$plot_type,
  321. "scatter" = generate_scatter_plot(plot, config),
  322. "rank" = generate_rank_plot(plot, config),
  323. "correlation" = generate_correlation_plot(plot, config),
  324. "box" = generate_box_plot(plot, config),
  325. "density" = plot + geom_density(),
  326. "bar" = plot + geom_bar(),
  327. plot # default case if no type matches
  328. )
  329. return(plot)
  330. })
  331. # PDF saving logic
  332. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  333. lapply(plots, print)
  334. dev.off()
  335. # HTML saving logic
  336. plotly_plots <- lapply(plots, function(plot) {
  337. config <- plot$labels$config
  338. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  339. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  340. } else {
  341. ggplotly(plot, tooltip = "text")
  342. }
  343. })
  344. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  345. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  346. }
  347. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  348. # Determine the base aesthetics
  349. aes_params <- aes(
  350. x = !!sym(config$x_var),
  351. y = !!sym(config$y_var),
  352. color = as.factor(!!sym(config$color_var)))
  353. # Add the interactive `text` aesthetic if `interactive` is TRUE
  354. if (interactive) {
  355. if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  356. aes_params$text <- paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)
  357. } else if (!is.null(config$gene_point) && config$gene_point) {
  358. aes_params$text <- paste("ORF:", OrfRep, "Gene:", Gene)
  359. }
  360. }
  361. # Add the base geom_point layer
  362. plot <- plot + geom_point(
  363. aes_params, shape = config$shape %||% 3,
  364. size = config$size %||% 0.2,
  365. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  366. # Add smooth line if specified
  367. if (!is.null(config$add_smooth) && config$add_smooth) {
  368. plot <- if (!is.null(config$lm_line)) {
  369. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  370. } else {
  371. plot + geom_smooth(method = "lm", se = FALSE)
  372. }
  373. }
  374. # Add x-axis customization if specified
  375. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  376. plot <- plot + scale_x_continuous(
  377. name = config$x_label,
  378. breaks = config$x_breaks,
  379. labels = config$x_labels)
  380. }
  381. # Add y-axis limits if specified
  382. if (!is.null(config$ylim_vals)) {
  383. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  384. }
  385. # Add Cartesian coordinates customization if specified
  386. if (!is.null(config$coord_cartesian)) {
  387. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  388. }
  389. return(plot)
  390. }
  391. generate_rank_plot <- function(plot, config) {
  392. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  393. if (!is.null(config$sd_band)) {
  394. for (i in seq_len(config$sd_band)) {
  395. plot <- plot +
  396. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  397. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  398. geom_hline(yintercept = c(-i, i), color = "gray")
  399. }
  400. }
  401. if (!is.null(config$enhancer_label)) {
  402. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  403. }
  404. if (!is.null(config$suppressor_label)) {
  405. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  406. }
  407. return(plot)
  408. }
  409. generate_correlation_plot <- function(plot, config) {
  410. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  411. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  412. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  413. if (!is.null(config$rect)) {
  414. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  415. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  416. }
  417. return(plot)
  418. }
  419. generate_box_plot <- function(plot, config) {
  420. plot <- plot + geom_boxplot()
  421. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  422. plot <- plot + scale_x_discrete(
  423. name = config$x_label,
  424. breaks = config$x_breaks,
  425. labels = config$x_labels
  426. )
  427. }
  428. if (!is.null(config$coord_cartesian)) {
  429. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  430. }
  431. return(plot)
  432. }
  433. generate_interaction_plot_configs <- function(df, variables) {
  434. configs <- list()
  435. # Define common y-limits and other attributes for each variable dynamically
  436. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  437. # Define annotation positions based on the variable being plotted
  438. annotation_positions <- list(
  439. L = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  440. K = list(ZShift = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  441. r = list(ZShift = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  442. AUC = list(ZShift = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  443. )
  444. # Define which annotations to include for each plot
  445. annotation_labels <- list(
  446. ZShift = function(df, var) paste("ZShift =", round(df[[paste0("Z_Shift_", var)]], 2)),
  447. lm_ZScore = function(df, var) paste("lm ZScore =", round(df[[paste0("Z_lm_", var)]], 2)),
  448. NG = function(df, var) paste("NG =", df$NG),
  449. DB = function(df, var) paste("DB =", df$DB),
  450. SM = function(df, var) paste("SM =", df$SM)
  451. )
  452. for (variable in variables) {
  453. # Dynamically generate the names of the columns
  454. var_info <- list(
  455. ylim = limits_map[[variable]],
  456. lm_model = df[[paste0("lm_", variable)]][[1]], # Access the precomputed linear model
  457. sd_col = paste0("WT_sd_", variable),
  458. delta_var = paste0("Delta_", variable)
  459. )
  460. # Extract the precomputed linear model coefficients
  461. lm_line <- list(
  462. intercept = coef(var_info$lm_model)[1],
  463. slope = coef(var_info$lm_model)[2]
  464. )
  465. # Dynamically create annotations based on variable
  466. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  467. y_pos <- annotation_positions[[variable]][[annotation_name]]
  468. label <- annotation_labels[[annotation_name]](df, variable)
  469. list(x = 1, y = y_pos, label = label)
  470. })
  471. # Add scatter plot configuration for this variable
  472. configs[[length(configs) + 1]] <- list(
  473. df = df,
  474. x_var = "conc_num_factor",
  475. y_var = var_info$delta_var,
  476. plot_type = "scatter",
  477. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  478. ylim_vals = var_info$ylim,
  479. annotations = annotations,
  480. lm_line = lm_line, # Precomputed linear model
  481. error_bar = list(
  482. ymin = 0 - (2 * df[[var_info$sd_col]][1]),
  483. ymax = 0 + (2 * df[[var_info$sd_col]][1])
  484. ),
  485. x_breaks = unique(df$conc_num_factor),
  486. x_labels = unique(as.character(df$conc_num)),
  487. x_label = unique(df$Drug[1]),
  488. shape = 3,
  489. size = 0.6,
  490. position = "jitter",
  491. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  492. )
  493. # Add box plot configuration for this variable
  494. configs[[length(configs) + 1]] <- list(
  495. df = df,
  496. x_var = "conc_num_factor",
  497. y_var = variable,
  498. plot_type = "box",
  499. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  500. ylim_vals = var_info$ylim,
  501. annotations = annotations,
  502. error_bar = FALSE, # Boxplots typically don't need error bars
  503. x_breaks = unique(df$conc_num_factor),
  504. x_labels = unique(as.character(df$conc_num)),
  505. x_label = unique(df$Drug[1]),
  506. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  507. )
  508. }
  509. return(configs)
  510. }
  511. # Adjust missing values and calculate ranks
  512. adjust_missing_and_rank <- function(df, variables) {
  513. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  514. df <- df %>%
  515. mutate(across(all_of(variables), list(
  516. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  517. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  518. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  519. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  520. ), .names = "{fn}_{col}"))
  521. return(df)
  522. }
  523. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  524. configs <- list()
  525. # Adjust titles for _lm plots if is_lm is TRUE
  526. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  527. # Annotated version (with text)
  528. for (sd_band in c(1, 2, 3)) {
  529. configs[[length(configs) + 1]] <- list(
  530. df = df,
  531. x_var = rank_var,
  532. y_var = zscore_var,
  533. plot_type = "rank",
  534. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  535. sd_band = sd_band,
  536. enhancer_label = list(
  537. x = nrow(df) / 2, y = 10,
  538. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  539. ),
  540. suppressor_label = list(
  541. x = nrow(df) / 2, y = -10,
  542. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  543. ),
  544. shape = 3,
  545. size = 0.1
  546. )
  547. }
  548. # Non-annotated version (_notext)
  549. for (sd_band in c(1, 2, 3)) {
  550. configs[[length(configs) + 1]] <- list(
  551. df = df,
  552. x_var = rank_var,
  553. y_var = zscore_var,
  554. plot_type = "rank",
  555. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  556. sd_band = sd_band,
  557. enhancer_label = NULL, # No annotations for _notext
  558. suppressor_label = NULL, # No annotations for _notext
  559. shape = 3,
  560. size = 0.1,
  561. position = "jitter"
  562. )
  563. }
  564. return(configs)
  565. }
  566. generate_correlation_plot_configs <- function(df, variables) {
  567. configs <- list()
  568. for (variable in variables) {
  569. z_lm_var <- paste0("Z_lm_", variable)
  570. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  571. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  572. configs[[length(configs) + 1]] <- list(
  573. df = df,
  574. x_var = avg_zscore_var,
  575. y_var = z_lm_var,
  576. plot_type = "correlation",
  577. title = paste("Avg Zscore vs lm", variable),
  578. color_var = "Overlap",
  579. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  580. shape = 3,
  581. geom_smooth = TRUE,
  582. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  583. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  584. legend_position = "right"
  585. )
  586. }
  587. return(configs)
  588. }
  589. main <- function() {
  590. lapply(names(args$experiments), function(exp_name) {
  591. exp <- args$experiments[[exp_name]]
  592. exp_path <- exp$path
  593. exp_sd <- exp$sd
  594. out_dir <- file.path(exp_path, "zscores")
  595. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  596. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  597. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  598. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  599. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  600. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  601. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  602. message("Loading and filtering data")
  603. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  604. df <- update_gene_names(df, args$sgd_gene_list)
  605. df <- as_tibble(df)
  606. # Filter rows that are above tolerance for quality control plots
  607. df_above_tolerance <- df %>% filter(DB == 1)
  608. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  609. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  610. # Remove rows with 0 values in L
  611. df_no_zeros <- df_na %>% filter(L > 0)
  612. # Save some constants
  613. max_conc <- max(df$conc_num_factor)
  614. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  615. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  616. message("Calculating summary statistics before quality control")
  617. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  618. # df_ss <- ss$summary_stats
  619. df_stats <- ss$df_with_stats
  620. df_filtered_stats <- df_stats %>%
  621. {
  622. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  623. if (nrow(non_finite_rows) > 0) {
  624. message("Removed the following non-finite rows:")
  625. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  626. }
  627. filter(., if_all(c(L), is.finite))
  628. }
  629. message("Calculating summary statistics after quality control")
  630. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  631. df_na_ss <- ss$summary_stats
  632. df_na_stats <- ss$df_with_stats
  633. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  634. # Filter out non-finite rows for plotting
  635. df_na_filtered_stats <- df_na_stats %>%
  636. {
  637. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  638. if (nrow(non_finite_rows) > 0) {
  639. message("Removed the following non-finite rows:")
  640. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  641. }
  642. filter(., if_all(c(L), is.finite))
  643. }
  644. message("Calculating summary statistics after quality control excluding zero values")
  645. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  646. df_no_zeros_stats <- ss$df_with_stats
  647. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  648. {
  649. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  650. if (nrow(non_finite_rows) > 0) {
  651. message("Removed the following non-finite rows:")
  652. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  653. }
  654. filter(., if_all(c(L), is.finite))
  655. }
  656. message("Filtering by 2SD of K")
  657. df_na_within_2sd_k <- df_na_stats %>%
  658. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  659. df_na_outside_2sd_k <- df_na_stats %>%
  660. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  661. message("Calculating summary statistics for L within 2SD of K")
  662. # TODO We're omitting the original z_max calculation, not sure if needed?
  663. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  664. l_within_2sd_k_ss <- ss$summary_stats
  665. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  666. write.csv(l_within_2sd_k_ss,
  667. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  668. message("Calculating summary statistics for L outside 2SD of K")
  669. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  670. l_outside_2sd_k_ss <- ss$summary_stats
  671. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  672. write.csv(l_outside_2sd_k_ss,
  673. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  674. # Each plots list corresponds to a file
  675. message("Generating QC plot configurations")
  676. l_vs_k_plots <- list(
  677. list(
  678. df = df,
  679. x_var = "L",
  680. y_var = "K",
  681. plot_type = "scatter",
  682. delta_bg_point = TRUE,
  683. title = "Raw L vs K before quality control",
  684. color_var = "conc_num",
  685. error_bar = FALSE,
  686. legend_position = "right"
  687. )
  688. )
  689. frequency_delta_bg_plots <- list(
  690. list(
  691. df = df_filtered_stats,
  692. x_var = "delta_bg",
  693. y_var = NULL,
  694. plot_type = "density",
  695. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  696. color_var = "conc_num",
  697. x_label = "Delta Background",
  698. y_label = "Density",
  699. error_bar = FALSE,
  700. legend_position = "right"),
  701. list(
  702. df = df_filtered_stats,
  703. x_var = "delta_bg",
  704. y_var = NULL,
  705. plot_type = "bar",
  706. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  707. color_var = "conc_num",
  708. x_label = "Delta Background",
  709. y_label = "Count",
  710. error_bar = FALSE,
  711. legend_position = "right")
  712. )
  713. above_threshold_plots <- list(
  714. list(
  715. df = df_above_tolerance,
  716. x_var = "L",
  717. y_var = "K",
  718. plot_type = "scatter",
  719. delta_bg_point = TRUE,
  720. title = paste("Raw L vs K for strains above Delta Background threshold of",
  721. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  722. color_var = "conc_num",
  723. position = "jitter",
  724. annotations = list(
  725. x = l_half_median,
  726. y = k_half_median,
  727. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  728. ),
  729. error_bar = FALSE,
  730. legend_position = "right"
  731. )
  732. )
  733. plate_analysis_plots <- list()
  734. for (var in summary_vars) {
  735. for (stage in c("before", "after")) {
  736. if (stage == "before") {
  737. df_plot <- df_filtered_stats
  738. } else {
  739. df_plot <- df_na_filtered_stats
  740. }
  741. config <- list(
  742. df = df_plot,
  743. x_var = "scan",
  744. y_var = var,
  745. plot_type = "scatter",
  746. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  747. error_bar = TRUE,
  748. color_var = "conc_num",
  749. position = "jitter")
  750. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  751. }
  752. }
  753. plate_analysis_boxplots <- list()
  754. for (var in summary_vars) {
  755. for (stage in c("before", "after")) {
  756. if (stage == "before") {
  757. df_plot <- df_filtered_stats
  758. } else {
  759. df_plot <- df_na_filtered_stats
  760. }
  761. config <- list(
  762. df = df_plot,
  763. x_var = "scan",
  764. y_var = var,
  765. plot_type = "box",
  766. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  767. error_bar = FALSE, color_var = "conc_num")
  768. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  769. }
  770. }
  771. plate_analysis_no_zeros_plots <- list()
  772. for (var in summary_vars) {
  773. config <- list(
  774. df = df_no_zeros_filtered_stats,
  775. x_var = "scan",
  776. y_var = var,
  777. plot_type = "scatter",
  778. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  779. error_bar = TRUE,
  780. color_var = "conc_num",
  781. position = "jitter")
  782. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  783. }
  784. plate_analysis_no_zeros_boxplots <- list()
  785. for (var in summary_vars) {
  786. config <- list(
  787. df = df_no_zeros_filtered_stats,
  788. x_var = "scan",
  789. y_var = var,
  790. plot_type = "box",
  791. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  792. error_bar = FALSE,
  793. color_var = "conc_num"
  794. )
  795. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  796. }
  797. l_outside_2sd_k_plots <- list(
  798. list(
  799. df = df_na_l_outside_2sd_k_stats,
  800. x_var = "L",
  801. y_var = "K",
  802. plot_type = "scatter",
  803. delta_bg_point = TRUE,
  804. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  805. color_var = "conc_num",
  806. position = "jitter",
  807. legend_position = "right"
  808. )
  809. )
  810. delta_bg_outside_2sd_k_plots <- list(
  811. list(
  812. df = df_na_l_outside_2sd_k_stats,
  813. x_var = "delta_bg",
  814. y_var = "K",
  815. plot_type = "scatter",
  816. gene_point = TRUE,
  817. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  818. color_var = "conc_num",
  819. position = "jitter",
  820. legend_position = "right"
  821. )
  822. )
  823. message("Generating QC plots")
  824. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  825. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  826. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  827. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  828. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  829. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  830. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  831. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  832. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  833. # Clean up
  834. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  835. gc()
  836. # TODO: Originally this filtered L NA's
  837. # Let's try to avoid for now since stats have already been calculated
  838. # Process background strains
  839. bg_strains <- c("YDL227C")
  840. lapply(bg_strains, function(strain) {
  841. message("Processing background strain: ", strain)
  842. # Handle missing data by setting zero values to NA
  843. # and then removing any rows with NA in L col
  844. df_bg <- df_na %>%
  845. filter(OrfRep == strain) %>%
  846. mutate(
  847. L = if_else(L == 0, NA, L),
  848. K = if_else(K == 0, NA, K),
  849. r = if_else(r == 0, NA, r),
  850. AUC = if_else(AUC == 0, NA, AUC)
  851. ) %>%
  852. filter(!is.na(L))
  853. # Recalculate summary statistics for the background strain
  854. message("Calculating summary statistics for background strain")
  855. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  856. summary_stats_bg <- ss_bg$summary_stats
  857. # df_bg_stats <- ss_bg$df_with_stats
  858. write.csv(summary_stats_bg,
  859. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  860. row.names = FALSE)
  861. # Filter reference and deletion strains
  862. # Formerly X2_RF (reference strains)
  863. df_reference <- df_na_stats %>%
  864. filter(OrfRep == strain) %>%
  865. mutate(SM = 0)
  866. # Formerly X2 (deletion strains)
  867. df_deletion <- df_na_stats %>%
  868. filter(OrfRep != strain) %>%
  869. mutate(SM = 0)
  870. # Set the missing values to the highest theoretical value at each drug conc for L
  871. # Leave other values as 0 for the max/min
  872. reference_strain <- df_reference %>%
  873. group_by(conc_num) %>%
  874. mutate(
  875. max_l_theoretical = max(max_L, na.rm = TRUE),
  876. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  877. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  878. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  879. ungroup()
  880. # Ditto for deletion strains
  881. deletion_strains <- df_deletion %>%
  882. group_by(conc_num) %>%
  883. mutate(
  884. max_l_theoretical = max(max_L, na.rm = TRUE),
  885. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  886. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  887. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  888. ungroup()
  889. # Calculate interactions
  890. interaction_vars <- c("L", "K", "r", "AUC")
  891. message("Calculating interaction scores")
  892. # print("Reference strain:")
  893. # print(head(reference_strain))
  894. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars)
  895. # print("Deletion strains:")
  896. # print(head(deletion_strains))
  897. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars)
  898. zscores_calculations_reference <- reference_results$calculations
  899. zscores_interactions_reference <- reference_results$interactions
  900. zscores_calculations <- deletion_results$calculations
  901. zscores_interactions <- deletion_results$interactions
  902. # Writing Z-Scores to file
  903. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  904. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  905. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  906. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  907. # Create interaction plots
  908. reference_plot_configs <- generate_interaction_plot_configs(df_reference, interaction_vars)
  909. deletion_plot_configs <- generate_interaction_plot_configs(df_deletion, interaction_vars)
  910. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  911. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  912. # Define conditions for enhancers and suppressors
  913. # TODO Add to study config file?
  914. threshold <- 2
  915. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  916. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  917. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  918. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  919. # Subset data
  920. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  921. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  922. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  923. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  924. # Save enhancers and suppressors
  925. message("Writing enhancer/suppressor csv files")
  926. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  927. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  928. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  929. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  930. # Combine conditions for enhancers and suppressors
  931. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  932. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  933. # Save combined enhancers and suppressors
  934. write.csv(enhancers_and_suppressors_L,
  935. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  936. write.csv(enhancers_and_suppressors_K,
  937. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  938. # Handle linear model based enhancers and suppressors
  939. lm_threshold <- 2
  940. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  941. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  942. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  943. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  944. # Save linear model based enhancers and suppressors
  945. message("Writing linear model enhancer/suppressor csv files")
  946. write.csv(enhancers_lm_L,
  947. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  948. write.csv(suppressors_lm_L,
  949. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  950. write.csv(enhancers_lm_K,
  951. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  952. write.csv(suppressors_lm_K,
  953. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  954. # TODO needs explanation
  955. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  956. rank_plot_configs <- c(
  957. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  958. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  959. )
  960. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  961. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  962. rank_lm_plot_config <- c(
  963. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  964. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  965. )
  966. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  967. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  968. # Formerly X_NArm
  969. zscores_interactions_filtered <- zscores_interactions %>%
  970. group_by(across(all_of(group_vars))) %>%
  971. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  972. # Final filtered correlation calculations and plots
  973. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  974. mutate(
  975. Overlap = case_when(
  976. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  977. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  978. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  979. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  980. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  981. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  982. TRUE ~ "No Effect"
  983. ),
  984. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  985. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  986. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  987. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  988. ) %>%
  989. ungroup()
  990. rank_plot_configs <- c(
  991. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  992. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  993. )
  994. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  995. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  996. rank_lm_plot_configs <- c(
  997. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  998. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  999. )
  1000. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1001. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1002. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1003. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1004. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1005. })
  1006. })
  1007. }
  1008. main()