calculate_interaction_zscores.R 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. stats <- df %>%
  177. mutate(
  178. WT_L = mean_L,
  179. WT_K = mean_K,
  180. WT_r = mean_r,
  181. WT_AUC = mean_AUC,
  182. WT_sd_L = sd_L,
  183. WT_sd_K = sd_K,
  184. WT_sd_r = sd_r,
  185. WT_sd_AUC = sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  197. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  200. ), .names = "{.fn}_{.col}")
  201. )
  202. stats <- stats %>%
  203. mutate(
  204. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  205. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  206. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  207. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  208. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  209. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  210. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  211. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  212. )
  213. stats <- stats %>%
  214. mutate(
  215. Exp_L = WT_L + Raw_Shift_L,
  216. Exp_K = WT_K + Raw_Shift_K,
  217. Exp_r = WT_r + Raw_Shift_r,
  218. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  219. Delta_L = mean_L - Exp_L,
  220. Delta_K = mean_K - Exp_K,
  221. Delta_r = mean_r - Exp_r,
  222. Delta_AUC = mean_AUC - Exp_AUC
  223. )
  224. stats <- stats %>%
  225. mutate(
  226. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  227. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  228. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  229. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  230. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  231. )
  232. stats <- stats %>%
  233. mutate(
  234. Zscore_L = Delta_L / WT_sd_L,
  235. Zscore_K = Delta_K / WT_sd_K,
  236. Zscore_r = Delta_r / WT_sd_r,
  237. Zscore_AUC = Delta_AUC / WT_sd_AUC
  238. ) %>%
  239. ungroup()
  240. # Create linear models with error handling for missing/insufficient data
  241. # This part is a PITA so best to contain it in its own function
  242. calculate_lm_values <- function(y, x) {
  243. if (length(unique(x)) > 1 && sum(!is.na(y)) > 1) {
  244. # Suppress warnings only for perfect fits or similar issues
  245. model <- suppressWarnings(lm(y ~ x))
  246. coefficients <- coef(model)
  247. r_squared <- tryCatch({
  248. summary(model)$r.squared
  249. }, warning = function(w) {
  250. NA # Set r-squared to NA if there's a warning
  251. })
  252. return(list(intercept = coefficients[1], slope = coefficients[2], r_squared = r_squared))
  253. } else {
  254. return(list(intercept = NA, slope = NA, r_squared = NA))
  255. }
  256. }
  257. lms <- stats %>%
  258. group_by(across(all_of(group_vars))) %>%
  259. reframe(
  260. lm_L = list(calculate_lm_values(Delta_L, conc_num_factor)),
  261. lm_K = list(calculate_lm_values(Delta_K, conc_num_factor)),
  262. lm_r = list(calculate_lm_values(Delta_r, conc_num_factor)),
  263. lm_AUC = list(calculate_lm_values(Delta_AUC, conc_num_factor))
  264. )
  265. lms <- lms %>%
  266. mutate(
  267. lm_L_intercept = sapply(lm_L, `[[`, "intercept"),
  268. lm_L_slope = sapply(lm_L, `[[`, "slope"),
  269. lm_L_r_squared = sapply(lm_L, `[[`, "r_squared"),
  270. lm_K_intercept = sapply(lm_K, `[[`, "intercept"),
  271. lm_K_slope = sapply(lm_K, `[[`, "slope"),
  272. lm_K_r_squared = sapply(lm_K, `[[`, "r_squared"),
  273. lm_r_intercept = sapply(lm_r, `[[`, "intercept"),
  274. lm_r_slope = sapply(lm_r, `[[`, "slope"),
  275. lm_r_r_squared = sapply(lm_r, `[[`, "r_squared"),
  276. lm_AUC_intercept = sapply(lm_AUC, `[[`, "intercept"),
  277. lm_AUC_slope = sapply(lm_AUC, `[[`, "slope"),
  278. lm_AUC_r_squared = sapply(lm_AUC, `[[`, "r_squared")
  279. ) %>%
  280. select(-lm_L, -lm_K, -lm_r, -lm_AUC)
  281. stats <- stats %>%
  282. left_join(lms, by = group_vars) %>%
  283. mutate(
  284. lm_Score_L = lm_L_slope * max_conc + lm_L_intercept,
  285. lm_Score_K = lm_K_slope * max_conc + lm_K_intercept,
  286. lm_Score_r = lm_r_slope * max_conc + lm_r_intercept,
  287. lm_Score_AUC = lm_AUC_slope * max_conc + lm_AUC_intercept,
  288. R_Squared_L = lm_L_r_squared,
  289. R_Squared_K = lm_K_r_squared,
  290. R_Squared_r = lm_r_r_squared,
  291. R_Squared_AUC = lm_AUC_r_squared,
  292. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  293. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  294. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  295. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  296. )
  297. stats <- stats %>%
  298. mutate(
  299. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  300. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  301. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  302. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  303. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  304. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  305. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  306. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  307. ) %>%
  308. ungroup()
  309. # Declare column order for output
  310. calculations <- stats %>%
  311. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  312. "mean_L", "mean_K", "mean_r", "mean_AUC",
  313. "median_L", "median_K", "median_r", "median_AUC",
  314. "sd_L", "sd_K", "sd_r", "sd_AUC",
  315. "se_L", "se_K", "se_r", "se_AUC",
  316. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  317. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  318. "WT_L", "WT_K", "WT_r", "WT_AUC",
  319. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  320. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  321. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  322. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  323. "NG", "SM", "DB")
  324. interactions <- stats %>%
  325. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  326. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  327. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  328. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  329. "Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
  330. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  331. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  332. "NG", "SM", "DB") %>%
  333. arrange(desc(lm_Score_L)) %>%
  334. arrange(desc(NG))
  335. df <- df %>% select(-any_of(setdiff(names(calculations), group_vars)))
  336. df <- left_join(df, calculations, by = group_vars)
  337. # df <- df %>% select(-any_of(setdiff(names(interactions), group_vars)))
  338. # df <- left_join(df, interactions, by = group_vars)
  339. return(list(calculations = calculations, interactions = interactions, joined = df))
  340. }
  341. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  342. message("Generating html and pdf plots for: ", file_name)
  343. plots <- lapply(plot_configs, function(config) {
  344. df <- config$df
  345. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  346. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  347. # Plots are testy about missing aesthetics, so handle them here
  348. aes_mapping <-
  349. if (is.null(config$color_var)) {
  350. if (is.null(config$y_var)) {
  351. aes(x = !!sym(config$x_var))
  352. } else {
  353. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  354. }
  355. } else {
  356. if (is.null(config$y_var)) {
  357. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  358. } else {
  359. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  360. }
  361. }
  362. # Start building the plot
  363. plot <- ggplot(df, aes_mapping)
  364. # Use appropriate helper function based on plot type
  365. plot <- switch(config$plot_type,
  366. "scatter" = generate_scatter_plot(plot, config),
  367. "rank" = generate_rank_plot(plot, config),
  368. "correlation" = generate_correlation_plot(plot, config),
  369. "box" = generate_box_plot(plot, config),
  370. "density" = plot + geom_density(),
  371. "bar" = plot + geom_bar(),
  372. plot # default case if no type matches
  373. )
  374. return(plot)
  375. })
  376. # PDF saving logic
  377. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  378. lapply(plots, print)
  379. dev.off()
  380. # HTML saving logic
  381. plotly_plots <- lapply(plots, function(plot) {
  382. config <- plot$config
  383. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  384. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  385. } else {
  386. ggplotly(plot, tooltip = "text")
  387. }
  388. })
  389. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  390. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  391. }
  392. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  393. # Add the interactive `text` aesthetic if `interactive` is TRUE
  394. if (interactive) {
  395. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  396. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  397. shape = config$shape %||% 3, size = config$size %||% 0.2)
  398. } else if (!is.null(config$gene_point) && config$gene_point) {
  399. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  400. shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  401. } else {
  402. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  403. }
  404. } else {
  405. # For non-interactive plots, just add `geom_point`
  406. plot <- plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2,
  407. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  408. }
  409. # Add smooth line if specified
  410. if (!is.null(config$add_smooth) && config$add_smooth) {
  411. plot <- if (!is.null(config$lm_line)) {
  412. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  413. } else {
  414. plot + geom_smooth(method = "lm", se = FALSE)
  415. }
  416. }
  417. # Add error bars if specified
  418. if (!is.null(config$error_bar) && config$error_bar) {
  419. y_mean_col <- paste0("mean_", config$y_var)
  420. y_sd_col <- paste0("sd_", config$y_var)
  421. plot <- plot + geom_errorbar(aes(
  422. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  423. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  424. ), alpha = 0.3)
  425. }
  426. # Add x-axis customization if specified
  427. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  428. plot <- plot + scale_x_continuous(
  429. name = config$x_label,
  430. breaks = config$x_breaks,
  431. labels = config$x_labels)
  432. }
  433. # Add y-axis limits if specified
  434. if (!is.null(config$ylim_vals)) {
  435. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  436. }
  437. # Add Cartesian coordinates customization if specified
  438. if (!is.null(config$coord_cartesian)) {
  439. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  440. }
  441. return(plot)
  442. }
  443. generate_rank_plot <- function(plot, config) {
  444. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  445. if (!is.null(config$sd_band)) {
  446. for (i in seq_len(config$sd_band)) {
  447. plot <- plot +
  448. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  449. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  450. geom_hline(yintercept = c(-i, i), color = "gray")
  451. }
  452. }
  453. if (!is.null(config$enhancer_label)) {
  454. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  455. }
  456. if (!is.null(config$suppressor_label)) {
  457. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  458. }
  459. return(plot)
  460. }
  461. generate_correlation_plot <- function(plot, config) {
  462. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  463. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  464. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  465. if (!is.null(config$rect)) {
  466. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  467. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  468. }
  469. return(plot)
  470. }
  471. generate_box_plot <- function(plot, config) {
  472. plot <- plot + geom_boxplot()
  473. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  474. plot <- plot + scale_x_discrete(
  475. name = config$x_label,
  476. breaks = config$x_breaks,
  477. labels = config$x_labels
  478. )
  479. }
  480. if (!is.null(config$coord_cartesian)) {
  481. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  482. }
  483. return(plot)
  484. }
  485. generate_interaction_plot_configs <- function(df, variables) {
  486. configs <- list()
  487. # Define common y-limits and other attributes for each variable dynamically
  488. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  489. # Define annotation positions based on the variable being plotted
  490. annotation_positions <- list(
  491. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  492. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  493. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  494. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  495. )
  496. # Define which annotations to include for each plot
  497. annotation_labels <- list(
  498. ZShift = function(df, var) {
  499. val <- df[[paste0("Z_Shift_", var)]]
  500. if (is.numeric(val)) {
  501. paste("ZShift =", round(val, 2))
  502. } else {
  503. paste("ZShift =", val)
  504. }
  505. },
  506. lm_ZScore = function(df, var) {
  507. val <- df[[paste0("Z_lm_", var)]]
  508. if (is.numeric(val)) {
  509. paste("lm ZScore =", round(val, 2))
  510. } else {
  511. paste("lm ZScore =", val)
  512. }
  513. },
  514. NG = function(df, var) paste("NG =", df$NG),
  515. DB = function(df, var) paste("DB =", df$DB),
  516. SM = function(df, var) paste("SM =", df$SM)
  517. )
  518. for (variable in variables) {
  519. # Dynamically generate the names of the columns
  520. var_info <- list(
  521. ylim = limits_map[[variable]],
  522. lm_model = df[[paste0("lm_", variable)]][[1]],
  523. sd_col = paste0("WT_sd_", variable),
  524. delta_var = paste0("Delta_", variable)
  525. )
  526. # Extract the precomputed linear model coefficients
  527. lm_line <- list(
  528. intercept = coef(var_info$lm_model)[1],
  529. slope = coef(var_info$lm_model)[2]
  530. )
  531. # Dynamically create annotations based on variable
  532. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  533. y_pos <- annotation_positions[[variable]][[annotation_name]]
  534. label <- annotation_labels[[annotation_name]](df, variable)
  535. list(x = 1, y = y_pos, label = label)
  536. })
  537. # Add scatter plot configuration for this variable
  538. configs[[length(configs) + 1]] <- list(
  539. df = df,
  540. x_var = "conc_num_factor",
  541. y_var = var_info$delta_var,
  542. plot_type = "scatter",
  543. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  544. ylim_vals = var_info$ylim,
  545. annotations = annotations,
  546. lm_line = lm_line, # Precomputed linear model
  547. error_bar = TRUE,
  548. x_breaks = unique(df$conc_num_factor),
  549. x_labels = unique(as.character(df$conc_num)),
  550. x_label = unique(df$Drug[1]),
  551. shape = 3,
  552. size = 0.6,
  553. position = "jitter",
  554. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  555. )
  556. # Add box plot configuration for this variable
  557. configs[[length(configs) + 1]] <- list(
  558. df = df,
  559. x_var = "conc_num_factor",
  560. y_var = variable,
  561. plot_type = "box",
  562. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  563. ylim_vals = var_info$ylim,
  564. annotations = annotations,
  565. error_bar = FALSE,
  566. x_breaks = unique(df$conc_num_factor),
  567. x_labels = unique(as.character(df$conc_num)),
  568. x_label = unique(df$Drug[1]),
  569. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  570. )
  571. }
  572. return(configs)
  573. }
  574. # Adjust missing values and calculate ranks
  575. adjust_missing_and_rank <- function(df, variables) {
  576. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  577. df <- df %>%
  578. mutate(across(all_of(variables), list(
  579. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  580. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  581. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  582. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  583. ), .names = "{fn}_{col}"))
  584. return(df)
  585. }
  586. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  587. configs <- list()
  588. # Adjust titles for _lm plots if is_lm is TRUE
  589. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  590. # Annotated version (with text)
  591. for (sd_band in c(1, 2, 3)) {
  592. configs[[length(configs) + 1]] <- list(
  593. df = df,
  594. x_var = rank_var,
  595. y_var = zscore_var,
  596. plot_type = "rank",
  597. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  598. sd_band = sd_band,
  599. enhancer_label = list(
  600. x = nrow(df) / 2, y = 10,
  601. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  602. ),
  603. suppressor_label = list(
  604. x = nrow(df) / 2, y = -10,
  605. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  606. ),
  607. shape = 3,
  608. size = 0.1
  609. )
  610. }
  611. # Non-annotated version (_notext)
  612. for (sd_band in c(1, 2, 3)) {
  613. configs[[length(configs) + 1]] <- list(
  614. df = df,
  615. x_var = rank_var,
  616. y_var = zscore_var,
  617. plot_type = "rank",
  618. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  619. sd_band = sd_band,
  620. enhancer_label = NULL, # No annotations for _notext
  621. suppressor_label = NULL, # No annotations for _notext
  622. shape = 3,
  623. size = 0.1,
  624. position = "jitter"
  625. )
  626. }
  627. return(configs)
  628. }
  629. generate_correlation_plot_configs <- function(df, variables) {
  630. configs <- list()
  631. for (variable in variables) {
  632. z_lm_var <- paste0("Z_lm_", variable)
  633. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  634. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  635. configs[[length(configs) + 1]] <- list(
  636. df = df,
  637. x_var = avg_zscore_var,
  638. y_var = z_lm_var,
  639. plot_type = "correlation",
  640. title = paste("Avg Zscore vs lm", variable),
  641. color_var = "Overlap",
  642. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  643. shape = 3,
  644. geom_smooth = TRUE,
  645. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  646. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  647. legend_position = "right"
  648. )
  649. }
  650. return(configs)
  651. }
  652. main <- function() {
  653. lapply(names(args$experiments), function(exp_name) {
  654. exp <- args$experiments[[exp_name]]
  655. exp_path <- exp$path
  656. exp_sd <- exp$sd
  657. out_dir <- file.path(exp_path, "zscores")
  658. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  659. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  660. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  661. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  662. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  663. orf_group_vars <- c("OrfRep", "Gene", "num")
  664. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  665. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  666. message("Loading and filtering data")
  667. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  668. df <- update_gene_names(df, args$sgd_gene_list)
  669. df <- as_tibble(df)
  670. # Filter rows that are above tolerance for quality control plots
  671. df_above_tolerance <- df %>% filter(DB == 1)
  672. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  673. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  674. # Remove rows with 0 values in L
  675. df_no_zeros <- df_na %>% filter(L > 0)
  676. # Save some constants
  677. max_conc <- max(df$conc_num_factor)
  678. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  679. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  680. message("Calculating summary statistics before quality control")
  681. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  682. # df_ss <- ss$summary_stats
  683. df_stats <- ss$df_with_stats
  684. df_filtered_stats <- df_stats %>%
  685. {
  686. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  687. if (nrow(non_finite_rows) > 0) {
  688. message("Filtering out the following non-finite rows:")
  689. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  690. }
  691. filter(., if_all(c(L), is.finite))
  692. }
  693. message("Calculating summary statistics after quality control")
  694. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  695. df_na_ss <- ss$summary_stats
  696. df_na_stats <- ss$df_with_stats
  697. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  698. # Filter out non-finite rows for plotting
  699. df_na_filtered_stats <- df_na_stats %>%
  700. {
  701. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  702. if (nrow(non_finite_rows) > 0) {
  703. message("Removed the following non-finite rows:")
  704. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  705. }
  706. filter(., if_all(c(L), is.finite))
  707. }
  708. message("Calculating summary statistics after quality control excluding zero values")
  709. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  710. df_no_zeros_stats <- ss$df_with_stats
  711. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  712. {
  713. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  714. if (nrow(non_finite_rows) > 0) {
  715. message("Removed the following non-finite rows:")
  716. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  717. }
  718. filter(., if_all(c(L), is.finite))
  719. }
  720. message("Filtering by 2SD of K")
  721. df_na_within_2sd_k <- df_na_stats %>%
  722. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  723. df_na_outside_2sd_k <- df_na_stats %>%
  724. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  725. message("Calculating summary statistics for L within 2SD of K")
  726. # TODO We're omitting the original z_max calculation, not sure if needed?
  727. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  728. l_within_2sd_k_ss <- ss$summary_stats
  729. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  730. write.csv(l_within_2sd_k_ss,
  731. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  732. message("Calculating summary statistics for L outside 2SD of K")
  733. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  734. l_outside_2sd_k_ss <- ss$summary_stats
  735. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  736. write.csv(l_outside_2sd_k_ss,
  737. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  738. # Each plots list corresponds to a file
  739. message("Generating quality control plot configurations")
  740. l_vs_k_plots <- list(
  741. list(
  742. df = df,
  743. x_var = "L",
  744. y_var = "K",
  745. plot_type = "scatter",
  746. delta_bg_point = TRUE,
  747. title = "Raw L vs K before quality control",
  748. color_var = "conc_num",
  749. error_bar = FALSE,
  750. legend_position = "right"
  751. )
  752. )
  753. frequency_delta_bg_plots <- list(
  754. list(
  755. df = df_filtered_stats,
  756. x_var = "delta_bg",
  757. y_var = NULL,
  758. plot_type = "density",
  759. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  760. color_var = "conc_num",
  761. x_label = "Delta Background",
  762. y_label = "Density",
  763. error_bar = FALSE,
  764. legend_position = "right"),
  765. list(
  766. df = df_filtered_stats,
  767. x_var = "delta_bg",
  768. y_var = NULL,
  769. plot_type = "bar",
  770. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  771. color_var = "conc_num",
  772. x_label = "Delta Background",
  773. y_label = "Count",
  774. error_bar = FALSE,
  775. legend_position = "right")
  776. )
  777. above_threshold_plots <- list(
  778. list(
  779. df = df_above_tolerance,
  780. x_var = "L",
  781. y_var = "K",
  782. plot_type = "scatter",
  783. delta_bg_point = TRUE,
  784. title = paste("Raw L vs K for strains above Delta Background threshold of",
  785. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  786. color_var = "conc_num",
  787. position = "jitter",
  788. annotations = list(
  789. x = l_half_median,
  790. y = k_half_median,
  791. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  792. ),
  793. error_bar = FALSE,
  794. legend_position = "right"
  795. )
  796. )
  797. plate_analysis_plots <- list()
  798. for (var in summary_vars) {
  799. for (stage in c("before", "after")) {
  800. if (stage == "before") {
  801. df_plot <- df_filtered_stats
  802. } else {
  803. df_plot <- df_na_filtered_stats
  804. }
  805. config <- list(
  806. df = df_plot,
  807. x_var = "scan",
  808. y_var = var,
  809. plot_type = "scatter",
  810. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  811. error_bar = TRUE,
  812. color_var = "conc_num",
  813. position = "jitter")
  814. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  815. }
  816. }
  817. plate_analysis_boxplots <- list()
  818. for (var in summary_vars) {
  819. for (stage in c("before", "after")) {
  820. if (stage == "before") {
  821. df_plot <- df_filtered_stats
  822. } else {
  823. df_plot <- df_na_filtered_stats
  824. }
  825. config <- list(
  826. df = df_plot,
  827. x_var = "scan",
  828. y_var = var,
  829. plot_type = "box",
  830. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  831. error_bar = FALSE,
  832. color_var = "conc_num")
  833. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  834. }
  835. }
  836. plate_analysis_no_zeros_plots <- list()
  837. for (var in summary_vars) {
  838. config <- list(
  839. df = df_no_zeros_filtered_stats,
  840. x_var = "scan",
  841. y_var = var,
  842. plot_type = "scatter",
  843. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  844. error_bar = TRUE,
  845. color_var = "conc_num",
  846. position = "jitter")
  847. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  848. }
  849. plate_analysis_no_zeros_boxplots <- list()
  850. for (var in summary_vars) {
  851. config <- list(
  852. df = df_no_zeros_filtered_stats,
  853. x_var = "scan",
  854. y_var = var,
  855. plot_type = "box",
  856. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  857. error_bar = FALSE,
  858. color_var = "conc_num"
  859. )
  860. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  861. }
  862. l_outside_2sd_k_plots <- list(
  863. list(
  864. df = df_na_l_outside_2sd_k_stats,
  865. x_var = "L",
  866. y_var = "K",
  867. plot_type = "scatter",
  868. delta_bg_point = TRUE,
  869. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  870. color_var = "conc_num",
  871. position = "jitter",
  872. legend_position = "right"
  873. )
  874. )
  875. delta_bg_outside_2sd_k_plots <- list(
  876. list(
  877. df = df_na_l_outside_2sd_k_stats,
  878. x_var = "delta_bg",
  879. y_var = "K",
  880. plot_type = "scatter",
  881. gene_point = TRUE,
  882. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  883. color_var = "conc_num",
  884. position = "jitter",
  885. legend_position = "right"
  886. )
  887. )
  888. message("Generating quality control plots")
  889. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  890. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  891. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  892. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  893. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  894. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  895. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  896. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  897. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  898. # Clean up
  899. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  900. gc()
  901. # TODO: Originally this filtered L NA's
  902. # Let's try to avoid for now since stats have already been calculated
  903. # Process background strains
  904. bg_strains <- c("YDL227C")
  905. lapply(bg_strains, function(strain) {
  906. message("Processing background strain: ", strain)
  907. # Handle missing data by setting zero values to NA
  908. # and then removing any rows with NA in L col
  909. df_bg <- df_na %>%
  910. filter(OrfRep == strain) %>%
  911. mutate(
  912. L = if_else(L == 0, NA, L),
  913. K = if_else(K == 0, NA, K),
  914. r = if_else(r == 0, NA, r),
  915. AUC = if_else(AUC == 0, NA, AUC)
  916. ) %>%
  917. filter(!is.na(L))
  918. # Recalculate summary statistics for the background strain
  919. message("Calculating summary statistics for background strain")
  920. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  921. summary_stats_bg <- ss_bg$summary_stats
  922. # df_bg_stats <- ss_bg$df_with_stats
  923. write.csv(summary_stats_bg,
  924. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  925. row.names = FALSE)
  926. # Filter reference and deletion strains
  927. # Formerly X2_RF (reference strains)
  928. df_reference <- df_na_stats %>%
  929. filter(OrfRep == strain) %>%
  930. mutate(SM = 0)
  931. # Formerly X2 (deletion strains)
  932. df_deletion <- df_na_stats %>%
  933. filter(OrfRep != strain) %>%
  934. mutate(SM = 0)
  935. # Set the missing values to the highest theoretical value at each drug conc for L
  936. # Leave other values as 0 for the max/min
  937. reference_strain <- df_reference %>%
  938. group_by(conc_num) %>%
  939. mutate(
  940. max_l_theoretical = max(max_L, na.rm = TRUE),
  941. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  942. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  943. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  944. ungroup()
  945. # Ditto for deletion strains
  946. deletion_strains <- df_deletion %>%
  947. group_by(conc_num) %>%
  948. mutate(
  949. max_l_theoretical = max(max_L, na.rm = TRUE),
  950. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  951. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  952. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  953. ungroup()
  954. # Calculate interactions
  955. interaction_vars <- c("L", "K", "r", "AUC")
  956. message("Calculating interaction scores")
  957. # print("Reference strain:")
  958. # print(head(reference_strain))
  959. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  960. # print("Deletion strains:")
  961. # print(head(deletion_strains))
  962. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  963. zscores_calculations_reference <- reference_results$calculations
  964. zscores_interactions_reference <- reference_results$interactions
  965. zscores_joined_reference <- reference_results$joined
  966. zscores_calculations <- deletion_results$calculations
  967. zscores_interactions <- deletion_results$interactions
  968. zscores_joined <- deletion_results$joined
  969. # Writing Z-Scores to file
  970. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  971. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  972. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  973. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  974. # Create interaction plots
  975. message("Generating interaction plot configurations")
  976. reference_plot_configs <- generate_interaction_plot_configs(zscores_joined_reference, interaction_vars)
  977. deletion_plot_configs <- generate_interaction_plot_configs(zscores_joined, interaction_vars)
  978. message("Generating interaction plots")
  979. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  980. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  981. # Define conditions for enhancers and suppressors
  982. # TODO Add to study config file?
  983. threshold <- 2
  984. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  985. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  986. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  987. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  988. # Subset data
  989. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  990. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  991. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  992. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  993. # Save enhancers and suppressors
  994. message("Writing enhancer/suppressor csv files")
  995. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  996. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  997. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  998. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  999. # Combine conditions for enhancers and suppressors
  1000. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1001. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1002. # Save combined enhancers and suppressors
  1003. write.csv(enhancers_and_suppressors_L,
  1004. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1005. write.csv(enhancers_and_suppressors_K,
  1006. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1007. # Handle linear model based enhancers and suppressors
  1008. lm_threshold <- 2
  1009. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1010. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1011. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1012. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1013. # Save linear model based enhancers and suppressors
  1014. message("Writing linear model enhancer/suppressor csv files")
  1015. write.csv(enhancers_lm_L,
  1016. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1017. write.csv(suppressors_lm_L,
  1018. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1019. write.csv(enhancers_lm_K,
  1020. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1021. write.csv(suppressors_lm_K,
  1022. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1023. # TODO needs explanation
  1024. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  1025. rank_plot_configs <- c(
  1026. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  1027. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  1028. )
  1029. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1030. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1031. rank_lm_plot_config <- c(
  1032. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1033. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1034. )
  1035. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1036. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1037. # Formerly X_NArm
  1038. zscores_interactions_filtered <- zscores_interactions %>%
  1039. group_by(across(all_of(orf_group_vars))) %>%
  1040. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1041. # Final filtered correlation calculations and plots
  1042. lm_results <- zscores_interactions_filtered %>%
  1043. summarise(
  1044. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1045. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1046. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1047. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1048. )
  1049. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1050. left_join(lm_results, by = orf_group_vars) %>%
  1051. mutate(
  1052. Overlap = case_when(
  1053. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1054. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1055. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1056. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1057. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1058. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1059. TRUE ~ "No Effect"
  1060. )
  1061. ) %>%
  1062. ungroup()
  1063. rank_plot_configs <- c(
  1064. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1065. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1066. )
  1067. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1068. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1069. rank_lm_plot_configs <- c(
  1070. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1071. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1072. )
  1073. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1074. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1075. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1076. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1077. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1078. })
  1079. })
  1080. }
  1081. main()