calculate_interaction_zscores.R 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. # Pull the background means and standard deviations from zero concentration
  163. bg_means <- list(
  164. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  165. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  166. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  167. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  168. )
  169. bg_sd <- list(
  170. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  171. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  172. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  173. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  174. )
  175. # Grab these values from the original df before mutating the new stats
  176. stats <- df %>%
  177. mutate(
  178. WT_L = mean_L,
  179. WT_K = mean_K,
  180. WT_r = mean_r,
  181. WT_AUC = mean_AUC,
  182. WT_sd_L = sd_L,
  183. WT_sd_K = sd_K,
  184. WT_sd_r = sd_r,
  185. WT_sd_AUC = sd_AUC
  186. )
  187. stats <- stats %>%
  188. group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
  189. summarise(
  190. N = sum(!is.na(L)),
  191. NG = sum(NG, na.rm = TRUE),
  192. DB = sum(DB, na.rm = TRUE),
  193. SM = sum(SM, na.rm = TRUE),
  194. across(all_of(variables), list(
  195. mean = ~mean(., na.rm = TRUE),
  196. median = ~median(., na.rm = TRUE),
  197. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  198. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  199. sd = ~sd(., na.rm = TRUE),
  200. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  201. ), .names = "{.fn}_{.col}")
  202. )
  203. stats <- stats %>%
  204. group_by(OrfRep, Gene, num) %>%
  205. mutate(
  206. Raw_Shift_L = first(mean_L) - bg_means$L,
  207. Raw_Shift_K = first(mean_K) - bg_means$K,
  208. Raw_Shift_r = first(mean_r) - bg_means$r,
  209. Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
  210. Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
  211. Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
  212. Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
  213. Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
  214. )
  215. stats <- stats %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Exp_K = WT_K + Raw_Shift_K,
  219. Exp_r = WT_r + Raw_Shift_r,
  220. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  221. Delta_L = mean_L - Exp_L,
  222. Delta_K = mean_K - Exp_K,
  223. Delta_r = mean_r - Exp_r,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. stats <- stats %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. stats <- stats %>%
  235. mutate(
  236. Zscore_L = Delta_L / WT_sd_L,
  237. Zscore_K = Delta_K / WT_sd_K,
  238. Zscore_r = Delta_r / WT_sd_r,
  239. Zscore_AUC = Delta_AUC / WT_sd_AUC
  240. )
  241. # Calculate linear models
  242. lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
  243. lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
  244. lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
  245. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
  246. interactions <- stats %>%
  247. transmute(
  248. OrfRep = first(OrfRep),
  249. Gene = first(Gene),
  250. Raw_Shift_L = first(Raw_Shift_L),
  251. Raw_Shift_K = first(Raw_Shift_K),
  252. Raw_Shift_r = first(Raw_Shift_r),
  253. Raw_Shift_AUC = first(Raw_Shift_AUC),
  254. Z_Shift_L = first(Z_Shift_L),
  255. Z_Shift_K = first(Z_Shift_K),
  256. Z_Shift_r = first(Z_Shift_r),
  257. Z_Shift_AUC = first(Z_Shift_AUC),
  258. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  259. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  260. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  261. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
  262. lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
  263. lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
  264. lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
  265. lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
  266. R_Squared_L = summary(lm_L)$r.squared,
  267. R_Squared_K = summary(lm_K)$r.squared,
  268. R_Squared_r = summary(lm_r)$r.squared,
  269. R_Squared_AUC = summary(lm_AUC)$r.squared,
  270. NG = sum(NG, na.rm = TRUE),
  271. DB = sum(DB, na.rm = TRUE),
  272. SM = sum(SM, na.rm = TRUE)
  273. )
  274. num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
  275. interactions <- interactions %>%
  276. mutate(
  277. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  278. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  279. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  280. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  281. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  282. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  283. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  284. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  285. ) %>%
  286. arrange(desc(Z_lm_L)) %>%
  287. arrange(desc(NG))
  288. # Declare column order for output
  289. calculations <- stats %>%
  290. select(
  291. "OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
  292. "mean_L", "mean_K", "mean_r", "mean_AUC",
  293. "median_L", "median_K", "median_r", "median_AUC",
  294. "sd_L", "sd_K", "sd_r", "sd_AUC",
  295. "se_L", "se_K", "se_r", "se_AUC",
  296. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  297. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  298. "WT_L", "WT_K", "WT_r", "WT_AUC",
  299. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  300. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  301. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  302. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  303. "NG", "SM", "DB")
  304. df <- df %>% select(-any_of(setdiff(names(calculations), OrfRep, Gene, num, conc_num, conc_num_factor)))
  305. df <- left_join(df, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
  306. # df <- df %>% select(-any_of(setdiff(names(interactions), group_vars)))
  307. # df <- left_join(df, interactions, by = group_vars)
  308. return(list(calculations = calculations, interactions = interactions, joined = df))
  309. }
  310. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  311. message("Generating html and pdf plots for: ", file_name)
  312. plots <- lapply(plot_configs, function(config) {
  313. df <- config$df
  314. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  315. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  316. # Plots are testy about missing aesthetics, so handle them here
  317. aes_mapping <-
  318. if (is.null(config$color_var)) {
  319. if (is.null(config$y_var)) {
  320. aes(x = !!sym(config$x_var))
  321. } else {
  322. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  323. }
  324. } else {
  325. if (is.null(config$y_var)) {
  326. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  327. } else {
  328. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  329. }
  330. }
  331. # Start building the plot
  332. plot <- ggplot(df, aes_mapping)
  333. # Use appropriate helper function based on plot type
  334. plot <- switch(config$plot_type,
  335. "scatter" = generate_scatter_plot(plot, config),
  336. "rank" = generate_rank_plot(plot, config),
  337. "correlation" = generate_correlation_plot(plot, config),
  338. "box" = generate_box_plot(plot, config),
  339. "density" = plot + geom_density(),
  340. "bar" = plot + geom_bar(),
  341. plot # default case if no type matches
  342. )
  343. return(plot)
  344. })
  345. # PDF saving logic
  346. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  347. lapply(plots, print)
  348. dev.off()
  349. # HTML saving logic
  350. plotly_plots <- lapply(plots, function(plot) {
  351. config <- plot$config
  352. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  353. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  354. } else {
  355. ggplotly(plot, tooltip = "text")
  356. }
  357. })
  358. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  359. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  360. }
  361. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  362. # Add the interactive `text` aesthetic if `interactive` is TRUE
  363. if (interactive) {
  364. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  365. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  366. shape = config$shape %||% 3, size = config$size %||% 0.2)
  367. } else if (!is.null(config$gene_point) && config$gene_point) {
  368. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  369. shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  370. } else {
  371. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  372. }
  373. } else {
  374. # For non-interactive plots, just add `geom_point`
  375. plot <- plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2,
  376. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  377. }
  378. # Add smooth line if specified
  379. if (!is.null(config$add_smooth) && config$add_smooth) {
  380. plot <- if (!is.null(config$lm_line)) {
  381. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  382. } else {
  383. plot + geom_smooth(method = "lm", se = FALSE)
  384. }
  385. }
  386. # Add error bars if specified
  387. if (!is.null(config$error_bar) && config$error_bar) {
  388. y_mean_col <- paste0("mean_", config$y_var)
  389. y_sd_col <- paste0("sd_", config$y_var)
  390. plot <- plot + geom_errorbar(aes(
  391. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  392. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  393. ), alpha = 0.3)
  394. }
  395. # Add x-axis customization if specified
  396. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  397. plot <- plot + scale_x_continuous(
  398. name = config$x_label,
  399. breaks = config$x_breaks,
  400. labels = config$x_labels)
  401. }
  402. # Add y-axis limits if specified
  403. if (!is.null(config$ylim_vals)) {
  404. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  405. }
  406. # Add Cartesian coordinates customization if specified
  407. if (!is.null(config$coord_cartesian)) {
  408. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  409. }
  410. return(plot)
  411. }
  412. generate_rank_plot <- function(plot, config) {
  413. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  414. if (!is.null(config$sd_band)) {
  415. for (i in seq_len(config$sd_band)) {
  416. plot <- plot +
  417. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  418. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  419. geom_hline(yintercept = c(-i, i), color = "gray")
  420. }
  421. }
  422. if (!is.null(config$enhancer_label)) {
  423. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  424. }
  425. if (!is.null(config$suppressor_label)) {
  426. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  427. }
  428. return(plot)
  429. }
  430. generate_correlation_plot <- function(plot, config) {
  431. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  432. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  433. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  434. if (!is.null(config$rect)) {
  435. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  436. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  437. }
  438. return(plot)
  439. }
  440. generate_box_plot <- function(plot, config) {
  441. plot <- plot + geom_boxplot()
  442. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  443. plot <- plot + scale_x_discrete(
  444. name = config$x_label,
  445. breaks = config$x_breaks,
  446. labels = config$x_labels
  447. )
  448. }
  449. if (!is.null(config$coord_cartesian)) {
  450. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  451. }
  452. return(plot)
  453. }
  454. generate_interaction_plot_configs <- function(df, variables) {
  455. configs <- list()
  456. # Define common y-limits and other attributes for each variable dynamically
  457. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  458. # Define annotation positions based on the variable being plotted
  459. annotation_positions <- list(
  460. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  461. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  462. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  463. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  464. )
  465. # Define which annotations to include for each plot
  466. annotation_labels <- list(
  467. ZShift = function(df, var) {
  468. val <- df[[paste0("Z_Shift_", var)]]
  469. if (is.numeric(val)) {
  470. paste("ZShift =", round(val, 2))
  471. } else {
  472. paste("ZShift =", val)
  473. }
  474. },
  475. lm_ZScore = function(df, var) {
  476. val <- df[[paste0("Z_lm_", var)]]
  477. if (is.numeric(val)) {
  478. paste("lm ZScore =", round(val, 2))
  479. } else {
  480. paste("lm ZScore =", val)
  481. }
  482. },
  483. NG = function(df, var) paste("NG =", df$NG),
  484. DB = function(df, var) paste("DB =", df$DB),
  485. SM = function(df, var) paste("SM =", df$SM)
  486. )
  487. for (variable in variables) {
  488. # Dynamically generate the names of the columns
  489. var_info <- list(
  490. ylim = limits_map[[variable]],
  491. lm_model = df[[paste0("lm_", variable)]][[1]],
  492. sd_col = paste0("WT_sd_", variable),
  493. delta_var = paste0("Delta_", variable)
  494. )
  495. # Extract the precomputed linear model coefficients
  496. lm_line <- list(
  497. intercept = coef(var_info$lm_model)[1],
  498. slope = coef(var_info$lm_model)[2]
  499. )
  500. # Dynamically create annotations based on variable
  501. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  502. y_pos <- annotation_positions[[variable]][[annotation_name]]
  503. label <- annotation_labels[[annotation_name]](df, variable)
  504. list(x = 1, y = y_pos, label = label)
  505. })
  506. # Add scatter plot configuration for this variable
  507. configs[[length(configs) + 1]] <- list(
  508. df = df,
  509. x_var = "conc_num_factor",
  510. y_var = var_info$delta_var,
  511. plot_type = "scatter",
  512. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  513. ylim_vals = var_info$ylim,
  514. annotations = annotations,
  515. lm_line = lm_line, # Precomputed linear model
  516. error_bar = TRUE,
  517. x_breaks = unique(df$conc_num_factor),
  518. x_labels = unique(as.character(df$conc_num)),
  519. x_label = unique(df$Drug[1]),
  520. shape = 3,
  521. size = 0.6,
  522. position = "jitter",
  523. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  524. )
  525. # Add box plot configuration for this variable
  526. configs[[length(configs) + 1]] <- list(
  527. df = df,
  528. x_var = "conc_num_factor",
  529. y_var = variable,
  530. plot_type = "box",
  531. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  532. ylim_vals = var_info$ylim,
  533. annotations = annotations,
  534. error_bar = FALSE,
  535. x_breaks = unique(df$conc_num_factor),
  536. x_labels = unique(as.character(df$conc_num)),
  537. x_label = unique(df$Drug[1]),
  538. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  539. )
  540. }
  541. return(configs)
  542. }
  543. # Adjust missing values and calculate ranks
  544. adjust_missing_and_rank <- function(df, variables) {
  545. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  546. df <- df %>%
  547. mutate(across(all_of(variables), list(
  548. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  549. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  550. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  551. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  552. ), .names = "{fn}_{col}"))
  553. return(df)
  554. }
  555. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  556. configs <- list()
  557. # Adjust titles for _lm plots if is_lm is TRUE
  558. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  559. # Annotated version (with text)
  560. for (sd_band in c(1, 2, 3)) {
  561. configs[[length(configs) + 1]] <- list(
  562. df = df,
  563. x_var = rank_var,
  564. y_var = zscore_var,
  565. plot_type = "rank",
  566. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  567. sd_band = sd_band,
  568. enhancer_label = list(
  569. x = nrow(df) / 2, y = 10,
  570. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  571. ),
  572. suppressor_label = list(
  573. x = nrow(df) / 2, y = -10,
  574. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  575. ),
  576. shape = 3,
  577. size = 0.1
  578. )
  579. }
  580. # Non-annotated version (_notext)
  581. for (sd_band in c(1, 2, 3)) {
  582. configs[[length(configs) + 1]] <- list(
  583. df = df,
  584. x_var = rank_var,
  585. y_var = zscore_var,
  586. plot_type = "rank",
  587. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  588. sd_band = sd_band,
  589. enhancer_label = NULL, # No annotations for _notext
  590. suppressor_label = NULL, # No annotations for _notext
  591. shape = 3,
  592. size = 0.1,
  593. position = "jitter"
  594. )
  595. }
  596. return(configs)
  597. }
  598. generate_correlation_plot_configs <- function(df, variables) {
  599. configs <- list()
  600. for (variable in variables) {
  601. z_lm_var <- paste0("Z_lm_", variable)
  602. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  603. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  604. configs[[length(configs) + 1]] <- list(
  605. df = df,
  606. x_var = avg_zscore_var,
  607. y_var = z_lm_var,
  608. plot_type = "correlation",
  609. title = paste("Avg Zscore vs lm", variable),
  610. color_var = "Overlap",
  611. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  612. shape = 3,
  613. geom_smooth = TRUE,
  614. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  615. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  616. legend_position = "right"
  617. )
  618. }
  619. return(configs)
  620. }
  621. main <- function() {
  622. lapply(names(args$experiments), function(exp_name) {
  623. exp <- args$experiments[[exp_name]]
  624. exp_path <- exp$path
  625. exp_sd <- exp$sd
  626. out_dir <- file.path(exp_path, "zscores")
  627. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  628. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  629. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  630. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  631. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  632. orf_group_vars <- c("OrfRep", "Gene", "num")
  633. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  634. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  635. message("Loading and filtering data")
  636. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  637. df <- update_gene_names(df, args$sgd_gene_list)
  638. df <- as_tibble(df)
  639. # Filter rows that are above tolerance for quality control plots
  640. df_above_tolerance <- df %>% filter(DB == 1)
  641. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  642. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  643. # Remove rows with 0 values in L
  644. df_no_zeros <- df_na %>% filter(L > 0)
  645. # Save some constants
  646. max_conc <- max(df$conc_num_factor)
  647. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  648. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  649. message("Calculating summary statistics before quality control")
  650. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  651. # df_ss <- ss$summary_stats
  652. df_stats <- ss$df_with_stats
  653. df_filtered_stats <- df_stats %>%
  654. {
  655. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  656. if (nrow(non_finite_rows) > 0) {
  657. message("Filtering out the following non-finite rows:")
  658. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  659. }
  660. filter(., if_all(c(L), is.finite))
  661. }
  662. message("Calculating summary statistics after quality control")
  663. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  664. df_na_ss <- ss$summary_stats
  665. df_na_stats <- ss$df_with_stats
  666. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  667. # Filter out non-finite rows for plotting
  668. df_na_filtered_stats <- df_na_stats %>%
  669. {
  670. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  671. if (nrow(non_finite_rows) > 0) {
  672. message("Removed the following non-finite rows:")
  673. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  674. }
  675. filter(., if_all(c(L), is.finite))
  676. }
  677. message("Calculating summary statistics after quality control excluding zero values")
  678. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  679. df_no_zeros_stats <- ss$df_with_stats
  680. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  681. {
  682. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  683. if (nrow(non_finite_rows) > 0) {
  684. message("Removed the following non-finite rows:")
  685. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  686. }
  687. filter(., if_all(c(L), is.finite))
  688. }
  689. message("Filtering by 2SD of K")
  690. df_na_within_2sd_k <- df_na_stats %>%
  691. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  692. df_na_outside_2sd_k <- df_na_stats %>%
  693. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  694. message("Calculating summary statistics for L within 2SD of K")
  695. # TODO We're omitting the original z_max calculation, not sure if needed?
  696. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  697. l_within_2sd_k_ss <- ss$summary_stats
  698. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  699. write.csv(l_within_2sd_k_ss,
  700. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  701. message("Calculating summary statistics for L outside 2SD of K")
  702. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  703. l_outside_2sd_k_ss <- ss$summary_stats
  704. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  705. write.csv(l_outside_2sd_k_ss,
  706. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  707. # Each plots list corresponds to a file
  708. message("Generating quality control plot configurations")
  709. l_vs_k_plots <- list(
  710. list(
  711. df = df,
  712. x_var = "L",
  713. y_var = "K",
  714. plot_type = "scatter",
  715. delta_bg_point = TRUE,
  716. title = "Raw L vs K before quality control",
  717. color_var = "conc_num",
  718. error_bar = FALSE,
  719. legend_position = "right"
  720. )
  721. )
  722. frequency_delta_bg_plots <- list(
  723. list(
  724. df = df_filtered_stats,
  725. x_var = "delta_bg",
  726. y_var = NULL,
  727. plot_type = "density",
  728. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  729. color_var = "conc_num",
  730. x_label = "Delta Background",
  731. y_label = "Density",
  732. error_bar = FALSE,
  733. legend_position = "right"),
  734. list(
  735. df = df_filtered_stats,
  736. x_var = "delta_bg",
  737. y_var = NULL,
  738. plot_type = "bar",
  739. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  740. color_var = "conc_num",
  741. x_label = "Delta Background",
  742. y_label = "Count",
  743. error_bar = FALSE,
  744. legend_position = "right")
  745. )
  746. above_threshold_plots <- list(
  747. list(
  748. df = df_above_tolerance,
  749. x_var = "L",
  750. y_var = "K",
  751. plot_type = "scatter",
  752. delta_bg_point = TRUE,
  753. title = paste("Raw L vs K for strains above Delta Background threshold of",
  754. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  755. color_var = "conc_num",
  756. position = "jitter",
  757. annotations = list(
  758. x = l_half_median,
  759. y = k_half_median,
  760. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  761. ),
  762. error_bar = FALSE,
  763. legend_position = "right"
  764. )
  765. )
  766. plate_analysis_plots <- list()
  767. for (var in summary_vars) {
  768. for (stage in c("before", "after")) {
  769. if (stage == "before") {
  770. df_plot <- df_filtered_stats
  771. } else {
  772. df_plot <- df_na_filtered_stats
  773. }
  774. config <- list(
  775. df = df_plot,
  776. x_var = "scan",
  777. y_var = var,
  778. plot_type = "scatter",
  779. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  780. error_bar = TRUE,
  781. color_var = "conc_num",
  782. position = "jitter")
  783. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  784. }
  785. }
  786. plate_analysis_boxplots <- list()
  787. for (var in summary_vars) {
  788. for (stage in c("before", "after")) {
  789. if (stage == "before") {
  790. df_plot <- df_filtered_stats
  791. } else {
  792. df_plot <- df_na_filtered_stats
  793. }
  794. config <- list(
  795. df = df_plot,
  796. x_var = "scan",
  797. y_var = var,
  798. plot_type = "box",
  799. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  800. error_bar = FALSE,
  801. color_var = "conc_num")
  802. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  803. }
  804. }
  805. plate_analysis_no_zeros_plots <- list()
  806. for (var in summary_vars) {
  807. config <- list(
  808. df = df_no_zeros_filtered_stats,
  809. x_var = "scan",
  810. y_var = var,
  811. plot_type = "scatter",
  812. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  813. error_bar = TRUE,
  814. color_var = "conc_num",
  815. position = "jitter")
  816. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  817. }
  818. plate_analysis_no_zeros_boxplots <- list()
  819. for (var in summary_vars) {
  820. config <- list(
  821. df = df_no_zeros_filtered_stats,
  822. x_var = "scan",
  823. y_var = var,
  824. plot_type = "box",
  825. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  826. error_bar = FALSE,
  827. color_var = "conc_num"
  828. )
  829. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  830. }
  831. l_outside_2sd_k_plots <- list(
  832. list(
  833. df = df_na_l_outside_2sd_k_stats,
  834. x_var = "L",
  835. y_var = "K",
  836. plot_type = "scatter",
  837. delta_bg_point = TRUE,
  838. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  839. color_var = "conc_num",
  840. position = "jitter",
  841. legend_position = "right"
  842. )
  843. )
  844. delta_bg_outside_2sd_k_plots <- list(
  845. list(
  846. df = df_na_l_outside_2sd_k_stats,
  847. x_var = "delta_bg",
  848. y_var = "K",
  849. plot_type = "scatter",
  850. gene_point = TRUE,
  851. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  852. color_var = "conc_num",
  853. position = "jitter",
  854. legend_position = "right"
  855. )
  856. )
  857. message("Generating quality control plots")
  858. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  859. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  860. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  861. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  862. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  863. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  864. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  865. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  866. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  867. # Clean up
  868. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  869. gc()
  870. # TODO: Originally this filtered L NA's
  871. # Let's try to avoid for now since stats have already been calculated
  872. # Process background strains
  873. bg_strains <- c("YDL227C")
  874. lapply(bg_strains, function(strain) {
  875. message("Processing background strain: ", strain)
  876. # Handle missing data by setting zero values to NA
  877. # and then removing any rows with NA in L col
  878. df_bg <- df_na %>%
  879. filter(OrfRep == strain) %>%
  880. mutate(
  881. L = if_else(L == 0, NA, L),
  882. K = if_else(K == 0, NA, K),
  883. r = if_else(r == 0, NA, r),
  884. AUC = if_else(AUC == 0, NA, AUC)
  885. ) %>%
  886. filter(!is.na(L))
  887. # Recalculate summary statistics for the background strain
  888. message("Calculating summary statistics for background strain")
  889. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  890. summary_stats_bg <- ss_bg$summary_stats
  891. # df_bg_stats <- ss_bg$df_with_stats
  892. write.csv(summary_stats_bg,
  893. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  894. row.names = FALSE)
  895. # Filter reference and deletion strains
  896. # Formerly X2_RF (reference strains)
  897. df_reference <- df_na_stats %>%
  898. filter(OrfRep == strain) %>%
  899. mutate(SM = 0)
  900. # Formerly X2 (deletion strains)
  901. df_deletion <- df_na_stats %>%
  902. filter(OrfRep != strain) %>%
  903. mutate(SM = 0)
  904. # Set the missing values to the highest theoretical value at each drug conc for L
  905. # Leave other values as 0 for the max/min
  906. reference_strain <- df_reference %>%
  907. group_by(conc_num) %>%
  908. mutate(
  909. max_l_theoretical = max(max_L, na.rm = TRUE),
  910. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  911. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  912. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  913. ungroup()
  914. # Ditto for deletion strains
  915. deletion_strains <- df_deletion %>%
  916. group_by(conc_num) %>%
  917. mutate(
  918. max_l_theoretical = max(max_L, na.rm = TRUE),
  919. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  920. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  921. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  922. ungroup()
  923. # Calculate interactions
  924. interaction_vars <- c("L", "K", "r", "AUC")
  925. message("Calculating interaction scores")
  926. # print("Reference strain:")
  927. # print(head(reference_strain))
  928. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  929. # print("Deletion strains:")
  930. # print(head(deletion_strains))
  931. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  932. zscores_calculations_reference <- reference_results$calculations
  933. zscores_interactions_reference <- reference_results$interactions
  934. zscores_joined_reference <- reference_results$joined
  935. zscores_calculations <- deletion_results$calculations
  936. zscores_interactions <- deletion_results$interactions
  937. zscores_joined <- deletion_results$joined
  938. # Writing Z-Scores to file
  939. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  940. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  941. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  942. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  943. # Create interaction plots
  944. message("Generating interaction plot configurations")
  945. reference_plot_configs <- generate_interaction_plot_configs(zscores_joined_reference, interaction_vars)
  946. deletion_plot_configs <- generate_interaction_plot_configs(zscores_joined, interaction_vars)
  947. message("Generating interaction plots")
  948. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  949. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  950. # Define conditions for enhancers and suppressors
  951. # TODO Add to study config file?
  952. threshold <- 2
  953. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  954. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  955. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  956. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  957. # Subset data
  958. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  959. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  960. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  961. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  962. # Save enhancers and suppressors
  963. message("Writing enhancer/suppressor csv files")
  964. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  965. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  966. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  967. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  968. # Combine conditions for enhancers and suppressors
  969. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  970. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  971. # Save combined enhancers and suppressors
  972. write.csv(enhancers_and_suppressors_L,
  973. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  974. write.csv(enhancers_and_suppressors_K,
  975. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  976. # Handle linear model based enhancers and suppressors
  977. lm_threshold <- 2
  978. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  979. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  980. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  981. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  982. # Save linear model based enhancers and suppressors
  983. message("Writing linear model enhancer/suppressor csv files")
  984. write.csv(enhancers_lm_L,
  985. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  986. write.csv(suppressors_lm_L,
  987. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  988. write.csv(enhancers_lm_K,
  989. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  990. write.csv(suppressors_lm_K,
  991. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  992. # TODO needs explanation
  993. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  994. rank_plot_configs <- c(
  995. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  996. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  997. )
  998. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  999. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1000. rank_lm_plot_config <- c(
  1001. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1002. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1003. )
  1004. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1005. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1006. # Formerly X_NArm
  1007. zscores_interactions_filtered <- zscores_interactions %>%
  1008. group_by(across(all_of(orf_group_vars))) %>%
  1009. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1010. # Final filtered correlation calculations and plots
  1011. lm_results <- zscores_interactions_filtered %>%
  1012. summarise(
  1013. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1014. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1015. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1016. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1017. )
  1018. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1019. left_join(lm_results, by = orf_group_vars) %>%
  1020. mutate(
  1021. Overlap = case_when(
  1022. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1023. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1024. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1025. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1026. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1027. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1028. TRUE ~ "No Effect"
  1029. )
  1030. ) %>%
  1031. ungroup()
  1032. rank_plot_configs <- c(
  1033. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1034. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1035. )
  1036. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1037. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1038. rank_lm_plot_configs <- c(
  1039. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1040. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1041. )
  1042. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1043. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1044. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1045. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1046. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1047. })
  1048. })
  1049. }
  1050. main()