calculate_interaction_zscores.R 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747
  1. suppressMessages({
  2. library("ggplot2")
  3. library("plotly")
  4. library("htmlwidgets")
  5. library("htmltools")
  6. library("dplyr")
  7. library("rlang")
  8. library("ggthemes")
  9. library("data.table")
  10. library("grid")
  11. library("gridExtra")
  12. library("future")
  13. library("furrr")
  14. library("purrr")
  15. })
  16. # These parallelization libraries are very noisy
  17. suppressPackageStartupMessages({
  18. library("future")
  19. library("furrr")
  20. library("purrr")
  21. })
  22. # Turn all warnings into errors for development
  23. options(warn = 2)
  24. parse_arguments <- function() {
  25. args <- if (interactive()) {
  26. c(
  27. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  28. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  30. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  31. "Experiment 1: Doxo versus HLD",
  32. 3,
  33. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  34. "Experiment 2: HLD versus Doxo",
  35. 3
  36. )
  37. } else {
  38. commandArgs(trailingOnly = TRUE)
  39. }
  40. out_dir <- normalizePath(args[1], mustWork = FALSE)
  41. sgd_gene_list <- normalizePath(args[2], mustWork = FALSE)
  42. easy_results_file <- normalizePath(args[3], mustWork = FALSE)
  43. # The remaining arguments should be in groups of 3
  44. exp_args <- args[-(1:3)]
  45. if (length(exp_args) %% 3 != 0) {
  46. stop("Experiment arguments should be in groups of 3: path, name, sd.")
  47. }
  48. # Extract the experiments into a list
  49. experiments <- list()
  50. for (i in seq(1, length(exp_args), by = 3)) {
  51. exp_name <- exp_args[i + 1]
  52. experiments[[exp_name]] <- list(
  53. path = normalizePath(exp_args[i], mustWork = FALSE),
  54. sd = as.numeric(exp_args[i + 2])
  55. )
  56. }
  57. # Extract the trailing number from each path
  58. trailing_numbers <- sapply(experiments, function(x) {
  59. path <- x$path
  60. nums <- gsub("[^0-9]", "", basename(path))
  61. as.integer(nums)
  62. })
  63. # Sort the experiments based on the trailing numbers
  64. sorted_experiments <- experiments[order(trailing_numbers)]
  65. list(
  66. out_dir = out_dir,
  67. sgd_gene_list = sgd_gene_list,
  68. easy_results_file = easy_results_file,
  69. experiments = sorted_experiments
  70. )
  71. }
  72. args <- parse_arguments()
  73. # Should we keep output in exp dirs or combine in the study output dir?
  74. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  75. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  76. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = NULL) {
  77. # Ensure that legend_position has a valid value or default to "none"
  78. legend_position <- if (is.null(legend_position) || length(legend_position) == 0) "none" else legend_position
  79. theme_foundation <- ggthemes::theme_foundation(base_size = base_size, base_family = base_family)
  80. theme_foundation %+replace%
  81. theme(
  82. plot.title = element_text(face = "bold", size = rel(1.6), hjust = 0.5),
  83. text = element_text(),
  84. panel.background = element_blank(),
  85. plot.background = element_blank(),
  86. panel.border = element_blank(),
  87. axis.title = element_text(face = "bold", size = rel(1.4)),
  88. axis.title.y = element_text(angle = 90, vjust = 2),
  89. axis.text = element_text(size = rel(1.2)),
  90. axis.line = element_line(colour = "black"),
  91. panel.grid.major = element_line(colour = "#f0f0f0"),
  92. panel.grid.minor = element_blank(),
  93. legend.key = element_rect(colour = NA),
  94. legend.position = legend_position,
  95. legend.direction =
  96. if (legend_position == "right") {
  97. "vertical"
  98. } else if (legend_position == "bottom") {
  99. "horizontal"
  100. } else {
  101. NULL # No legend direction if position is "none" or other values
  102. },
  103. legend.spacing = unit(0, "cm"),
  104. legend.title = element_text(face = "italic", size = rel(1.3)),
  105. legend.text = element_text(size = rel(1.2)),
  106. plot.margin = unit(c(10, 5, 5, 5), "mm")
  107. )
  108. }
  109. scale_fill_publication <- function(...) {
  110. discrete_scale("fill", "Publication", manual_pal(values = c(
  111. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  112. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  113. )), ...)
  114. }
  115. scale_colour_publication <- function(...) {
  116. discrete_scale("colour", "Publication", manual_pal(values = c(
  117. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  118. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  119. )), ...)
  120. }
  121. # Load the initial dataframe from the easy_results_file
  122. load_and_filter_data <- function(easy_results_file, sd = 3) {
  123. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  124. df <- df %>%
  125. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  126. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  127. # Rename columns
  128. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  129. mutate(
  130. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  131. delta_bg = last_bg - first_bg,
  132. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  133. NG = if_else(L == 0 & !is.na(L), 1, 0),
  134. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  135. SM = 0,
  136. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  137. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  138. conc_num_factor = as.numeric(as.factor(conc_num)) - 1, # for legacy purposes
  139. conc_num_factor_factor = as.factor(conc_num)
  140. )
  141. return(df)
  142. }
  143. update_gene_names <- function(df, sgd_gene_list) {
  144. genes <- read.delim(file = sgd_gene_list, quote = "", header = FALSE,
  145. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  146. gene_map <- setNames(genes$V5, genes$V4) # ORF to GeneName mapping
  147. df <- df %>%
  148. mutate(
  149. mapped_genes = gene_map[ORF],
  150. Gene = if_else(is.na(mapped_genes) | OrfRep == "YDL227C", Gene, mapped_genes),
  151. Gene = if_else(Gene == "" | Gene == "OCT1", OrfRep, Gene) # Handle invalid names
  152. )
  153. return(df)
  154. }
  155. calculate_summary_stats <- function(df, variables, group_vars) {
  156. summary_stats <- df %>%
  157. group_by(across(all_of(group_vars))) %>%
  158. summarise(
  159. N = n(),
  160. across(all_of(variables),
  161. list(
  162. mean = ~ mean(.x, na.rm = TRUE),
  163. median = ~ median(.x, na.rm = TRUE),
  164. max = ~ ifelse(all(is.na(.x)), NA, max(.x, na.rm = TRUE)),
  165. min = ~ ifelse(all(is.na(.x)), NA, min(.x, na.rm = TRUE)),
  166. sd = ~ sd(.x, na.rm = TRUE),
  167. se = ~ sd(.x, na.rm = TRUE) / sqrt(n() - 1)
  168. ),
  169. .names = "{.fn}_{.col}"
  170. ),
  171. .groups = "drop"
  172. )
  173. # Create a cleaned version of df that doesn't overlap with summary_stats
  174. df_cleaned <- df %>%
  175. select(-any_of(setdiff(intersect(names(df), names(summary_stats)), group_vars)))
  176. df_joined <- left_join(df_cleaned, summary_stats, by = group_vars)
  177. return(list(summary_stats = summary_stats, df_with_stats = df_joined))
  178. }
  179. calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2) {
  180. max_conc <- max(as.numeric(df$conc_num_factor), na.rm = TRUE)
  181. total_conc_num <- length(unique(df$conc_num))
  182. if (type == "reference") {
  183. bg_group_vars <- c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  184. group_vars <- c("OrfRep", "Gene", "num", "Drug")
  185. } else if (type == "deletion") {
  186. bg_group_vars <- c("Drug", "conc_num", "conc_num_factor", "conc_num_factor_factor")
  187. group_vars <- c("OrfRep", "Gene", "Drug")
  188. }
  189. # Calculate WT statistics from df_bg
  190. wt_stats <- df_bg %>%
  191. group_by(across(all_of(bg_group_vars))) %>%
  192. summarise(
  193. WT_L = mean(mean_L, na.rm = TRUE),
  194. WT_sd_L = mean(sd_L, na.rm = TRUE),
  195. WT_K = mean(mean_K, na.rm = TRUE),
  196. WT_sd_K = mean(sd_K, na.rm = TRUE),
  197. WT_r = mean(mean_r, na.rm = TRUE),
  198. WT_sd_r = mean(sd_r, na.rm = TRUE),
  199. WT_AUC = mean(mean_AUC, na.rm = TRUE),
  200. WT_sd_AUC = mean(sd_AUC, na.rm = TRUE),
  201. .groups = "drop"
  202. )
  203. # Join WT statistics to df
  204. df <- df %>%
  205. left_join(wt_stats, by = bg_group_vars)
  206. # Compute mean values at zero concentration
  207. mean_zeroes <- df %>%
  208. filter(conc_num == 0) %>%
  209. group_by(across(all_of(group_vars))) %>%
  210. summarise(
  211. mean_L_zero = mean(mean_L, na.rm = TRUE),
  212. mean_K_zero = mean(mean_K, na.rm = TRUE),
  213. mean_r_zero = mean(mean_r, na.rm = TRUE),
  214. mean_AUC_zero = mean(mean_AUC, na.rm = TRUE),
  215. .groups = "drop"
  216. )
  217. df <- df %>%
  218. left_join(mean_zeroes, by = c(group_vars))
  219. # Calculate Raw Shifts and Z Shifts
  220. df <- df %>%
  221. mutate(
  222. Raw_Shift_L = mean_L_zero - WT_L,
  223. Raw_Shift_K = mean_K_zero - WT_K,
  224. Raw_Shift_r = mean_r_zero - WT_r,
  225. Raw_Shift_AUC = mean_AUC_zero - WT_AUC,
  226. Z_Shift_L = Raw_Shift_L / WT_sd_L,
  227. Z_Shift_K = Raw_Shift_K / WT_sd_K,
  228. Z_Shift_r = Raw_Shift_r / WT_sd_r,
  229. Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC
  230. )
  231. calculations <- df %>%
  232. group_by(across(all_of(c(group_vars, "conc_num", "conc_num_factor", "conc_num_factor_factor")))) %>%
  233. mutate(
  234. NG_sum = sum(NG, na.rm = TRUE),
  235. DB_sum = sum(DB, na.rm = TRUE),
  236. SM_sum = sum(SM, na.rm = TRUE),
  237. num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
  238. # Expected values
  239. Exp_L = WT_L + Raw_Shift_L,
  240. Exp_K = WT_K + Raw_Shift_K,
  241. Exp_r = WT_r + Raw_Shift_r,
  242. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  243. # Deltas
  244. Delta_L = mean_L - Exp_L,
  245. Delta_K = mean_K - Exp_K,
  246. Delta_r = mean_r - Exp_r,
  247. Delta_AUC = mean_AUC - Exp_AUC,
  248. # Adjust deltas for NG and SM
  249. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  250. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  251. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  252. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  253. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
  254. # Calculate Z-scores
  255. Zscore_L = Delta_L / WT_sd_L,
  256. Zscore_K = Delta_K / WT_sd_K,
  257. Zscore_r = Delta_r / WT_sd_r,
  258. Zscore_AUC = Delta_AUC / WT_sd_AUC
  259. ) %>%
  260. ungroup() %>% # Ungroup before group_modify
  261. group_by(across(all_of(group_vars))) %>%
  262. group_modify(~ {
  263. # Check if there are enough unique conc_num_factor levels to perform lm
  264. if (length(unique(.x$conc_num_factor)) > 1) {
  265. # Perform linear modeling
  266. lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
  267. lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
  268. lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
  269. lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
  270. # If the model fails, set model-related values to NA
  271. .x %>%
  272. mutate(
  273. lm_intercept_L = ifelse(!is.null(lm_L), coef(lm_L)[1], NA),
  274. lm_slope_L = ifelse(!is.null(lm_L), coef(lm_L)[2], NA),
  275. R_Squared_L = ifelse(!is.null(lm_L), summary(lm_L)$r.squared, NA),
  276. lm_Score_L = ifelse(!is.null(lm_L), max_conc * coef(lm_L)[2] + coef(lm_L)[1], NA),
  277. lm_intercept_K = ifelse(!is.null(lm_K), coef(lm_K)[1], NA),
  278. lm_slope_K = ifelse(!is.null(lm_K), coef(lm_K)[2], NA),
  279. R_Squared_K = ifelse(!is.null(lm_K), summary(lm_K)$r.squared, NA),
  280. lm_Score_K = ifelse(!is.null(lm_K), max_conc * coef(lm_K)[2] + coef(lm_K)[1], NA),
  281. lm_intercept_r = ifelse(!is.null(lm_r), coef(lm_r)[1], NA),
  282. lm_slope_r = ifelse(!is.null(lm_r), coef(lm_r)[2], NA),
  283. R_Squared_r = ifelse(!is.null(lm_r), summary(lm_r)$r.squared, NA),
  284. lm_Score_r = ifelse(!is.null(lm_r), max_conc * coef(lm_r)[2] + coef(lm_r)[1], NA),
  285. lm_intercept_AUC = ifelse(!is.null(lm_AUC), coef(lm_AUC)[1], NA),
  286. lm_slope_AUC = ifelse(!is.null(lm_AUC), coef(lm_AUC)[2], NA),
  287. R_Squared_AUC = ifelse(!is.null(lm_AUC), summary(lm_AUC)$r.squared, NA),
  288. lm_Score_AUC = ifelse(!is.null(lm_AUC), max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1], NA)
  289. )
  290. } else {
  291. # If not enough conc_num_factor levels, set lm-related values to NA
  292. .x %>%
  293. mutate(
  294. lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
  295. lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
  296. lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
  297. lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
  298. )
  299. }
  300. }) %>%
  301. ungroup()
  302. # For interaction plot error bars
  303. delta_means_sds <- calculations %>%
  304. group_by(across(all_of(group_vars))) %>%
  305. summarise(
  306. mean_Delta_L = mean(Delta_L, na.rm = TRUE),
  307. mean_Delta_K = mean(Delta_K, na.rm = TRUE),
  308. mean_Delta_r = mean(Delta_r, na.rm = TRUE),
  309. mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
  310. sd_Delta_L = sd(Delta_L, na.rm = TRUE),
  311. sd_Delta_K = sd(Delta_K, na.rm = TRUE),
  312. sd_Delta_r = sd(Delta_r, na.rm = TRUE),
  313. sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
  314. .groups = "drop"
  315. )
  316. calculations <- calculations %>%
  317. left_join(delta_means_sds, by = group_vars)
  318. # Summary statistics for lm scores
  319. calculations <- calculations %>%
  320. mutate(
  321. lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
  322. lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
  323. lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
  324. lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
  325. lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
  326. lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
  327. lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
  328. lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
  329. ) %>%
  330. # Calculate Z-lm scores
  331. mutate(
  332. Z_lm_L = (lm_Score_L - lm_mean_L) / lm_sd_L,
  333. Z_lm_K = (lm_Score_K - lm_mean_K) / lm_sd_K,
  334. Z_lm_r = (lm_Score_r - lm_mean_r) / lm_sd_r,
  335. Z_lm_AUC = (lm_Score_AUC - lm_mean_AUC) / lm_sd_AUC
  336. )
  337. # Build summary stats (interactions)
  338. interactions <- calculations %>%
  339. group_by(across(all_of(group_vars))) %>%
  340. summarise(
  341. Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
  342. Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
  343. Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / (total_conc_num - 1),
  344. Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / (total_conc_num - 1),
  345. # Interaction Z-scores
  346. Z_lm_L = first(Z_lm_L),
  347. Z_lm_K = first(Z_lm_K),
  348. Z_lm_r = first(Z_lm_r),
  349. Z_lm_AUC = first(Z_lm_AUC),
  350. # Raw Shifts
  351. Raw_Shift_L = first(Raw_Shift_L),
  352. Raw_Shift_K = first(Raw_Shift_K),
  353. Raw_Shift_r = first(Raw_Shift_r),
  354. Raw_Shift_AUC = first(Raw_Shift_AUC),
  355. # Z Shifts
  356. Z_Shift_L = first(Z_Shift_L),
  357. Z_Shift_K = first(Z_Shift_K),
  358. Z_Shift_r = first(Z_Shift_r),
  359. Z_Shift_AUC = first(Z_Shift_AUC),
  360. # R Squared values
  361. R_Squared_L = first(R_Squared_L),
  362. R_Squared_K = first(R_Squared_K),
  363. R_Squared_r = first(R_Squared_r),
  364. R_Squared_AUC = first(R_Squared_AUC),
  365. # lm intercepts
  366. lm_intercept_L = first(lm_intercept_L),
  367. lm_intercept_K = first(lm_intercept_K),
  368. lm_intercept_r = first(lm_intercept_r),
  369. lm_intercept_AUC = first(lm_intercept_AUC),
  370. # lm slopes
  371. lm_slope_L = first(lm_slope_L),
  372. lm_slope_K = first(lm_slope_K),
  373. lm_slope_r = first(lm_slope_r),
  374. lm_slope_AUC = first(lm_slope_AUC),
  375. # NG, DB, SM values
  376. NG = first(NG),
  377. DB = first(DB),
  378. SM = first(SM),
  379. .groups = "drop"
  380. )
  381. # Add overlap threshold categories based on Z-lm and Avg-Z scores
  382. interactions <- interactions %>%
  383. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L)) %>%
  384. mutate(
  385. Overlap = case_when(
  386. Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
  387. Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
  388. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= overlap_threshold ~ "Deletion Enhancer lm only",
  389. Z_lm_L <= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
  390. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= -overlap_threshold ~ "Deletion Suppressor lm only",
  391. Z_lm_L >= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
  392. Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Zscore",
  393. Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Zscore",
  394. TRUE ~ "No Effect"
  395. ),
  396. # For correlation plots
  397. lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
  398. lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
  399. lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
  400. lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
  401. )
  402. # Creating the final calculations and interactions dataframes with only required columns for csv output
  403. df_calculations <- calculations %>%
  404. select(
  405. all_of(group_vars),
  406. conc_num, conc_num_factor, conc_num_factor_factor, N,
  407. mean_L, median_L, sd_L, se_L,
  408. mean_K, median_K, sd_K, se_K,
  409. mean_r, median_r, sd_r, se_r,
  410. mean_AUC, median_AUC, sd_AUC, se_AUC,
  411. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  412. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  413. WT_L, WT_K, WT_r, WT_AUC,
  414. WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
  415. Exp_L, Exp_K, Exp_r, Exp_AUC,
  416. Delta_L, Delta_K, Delta_r, Delta_AUC,
  417. mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
  418. Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
  419. )
  420. df_interactions <- interactions %>%
  421. select(
  422. all_of(group_vars),
  423. NG, DB, SM,
  424. Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
  425. Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
  426. Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
  427. Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
  428. lm_R_squared_L, lm_R_squared_K, lm_R_squared_r, lm_R_squared_AUC,
  429. lm_intercept_L, lm_intercept_K, lm_intercept_r, lm_intercept_AUC,
  430. lm_slope_L, lm_slope_K, lm_slope_r, lm_slope_AUC, Overlap
  431. )
  432. # Join calculations and interactions to avoid dimension mismatch
  433. calculations_no_overlap <- calculations %>%
  434. select(-any_of(c("DB", "NG", "SM",
  435. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  436. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  437. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  438. "lm_R_squared_L", "lm_R_squared_K", "lm_R_squared_r", "lm_R_squared_AUC",
  439. "lm_intercept_L", "lm_intercept_K", "lm_intercept_r", "lm_intercept_AUC",
  440. "lm_slope_L", "lm_slope_K", "lm_slope_r", "lm_slope_AUC"
  441. )))
  442. full_data <- calculations_no_overlap %>%
  443. left_join(df_interactions, by = group_vars)
  444. # Return final dataframes
  445. return(list(
  446. calculations = df_calculations,
  447. interactions = df_interactions,
  448. full_data = full_data
  449. ))
  450. }
  451. generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width = 12, page_height = 8) {
  452. message("Generating ", filename, ".pdf and ", filename, ".html")
  453. # Check if we're dealing with multiple plot groups
  454. plot_groups <- if ("plots" %in% names(plot_configs)) {
  455. list(plot_configs) # Single group
  456. } else {
  457. plot_configs # Multiple groups
  458. }
  459. # Open the PDF device once for all plots
  460. pdf(file.path(out_dir, paste0(filename, ".pdf")), width = page_width, height = page_height)
  461. # Loop through each plot group
  462. for (group in plot_groups) {
  463. static_plots <- list()
  464. plotly_plots <- list()
  465. # Retrieve grid layout if it exists, otherwise skip
  466. grid_layout <- group$grid_layout
  467. plots <- group$plots
  468. for (i in seq_along(plots)) {
  469. config <- plots[[i]]
  470. df <- config$df
  471. # Filter points outside of y-limits if specified
  472. if (!is.null(config$ylim_vals)) {
  473. out_of_bounds <- df %>%
  474. filter(
  475. is.na(.data[[config$y_var]]) |
  476. .data[[config$y_var]] < config$ylim_vals[1] |
  477. .data[[config$y_var]] > config$ylim_vals[2]
  478. )
  479. # Print rows being filtered out
  480. if (nrow(out_of_bounds) > 0) {
  481. message("Filtered ", nrow(out_of_bounds), " row(s) from '", config$title, "' because ", config$y_var,
  482. " is outside of y-limits: [", config$ylim_vals[1], ", ", config$ylim_vals[2], "]:")
  483. print(out_of_bounds %>% select(OrfRep, Gene, num, Drug, scan, Plate, Row, Col, conc_num, all_of(config$y_var)), width = 1000)
  484. }
  485. df <- df %>%
  486. filter(
  487. !is.na(.data[[config$y_var]]) &
  488. .data[[config$y_var]] >= config$ylim_vals[1] &
  489. .data[[config$y_var]] <= config$ylim_vals[2]
  490. )
  491. }
  492. # Filter NAs if specified
  493. if (!is.null(config$filter_na) && config$filter_na) {
  494. df <- df %>%
  495. filter(!is.na(.data[[config$y_var]]))
  496. }
  497. # Set up aes mapping based on plot type
  498. aes_mapping <- if (config$plot_type == "bar") {
  499. if (!is.null(config$color_var)) {
  500. aes(x = .data[[config$x_var]], fill = .data[[config$color_var]], color = .data[[config$color_var]])
  501. } else {
  502. aes(x = .data[[config$x_var]])
  503. }
  504. } else if (config$plot_type == "density") {
  505. if (!is.null(config$color_var)) {
  506. aes(x = .data[[config$x_var]], color = .data[[config$color_var]])
  507. } else {
  508. aes(x = .data[[config$x_var]])
  509. }
  510. } else {
  511. if (!is.null(config$y_var) && !is.null(config$color_var)) {
  512. aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = .data[[config$color_var]])
  513. } else if (!is.null(config$y_var)) {
  514. aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
  515. } else {
  516. aes(x = .data[[config$x_var]])
  517. }
  518. }
  519. plot <- ggplot(df, aes_mapping) + theme_publication(legend_position = config$legend_position)
  520. # Add appropriate plot layer or helper function based on plot type
  521. plot <- switch(config$plot_type,
  522. "scatter" = generate_scatter_plot(plot, config),
  523. "box" = generate_boxplot(plot, config),
  524. "density" = plot + geom_density(),
  525. "bar" = plot + geom_bar(),
  526. plot # default (unused)
  527. )
  528. # Add labels and title
  529. if (!is.null(config$title)) {
  530. plot <- plot + ggtitle(config$title)
  531. if (!is.null(config$title_size)) {
  532. plot <- plot + theme(plot.title = element_text(size = config$title_size))
  533. }
  534. }
  535. if (!is.null(config$x_label)) plot <- plot + xlab(config$x_label)
  536. if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
  537. if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  538. # Add annotations if specified
  539. if (!is.null(config$annotations)) {
  540. for (annotation in config$annotations) {
  541. plot <- plot +
  542. annotate(
  543. "text",
  544. x = ifelse(is.null(annotation$x), 0, annotation$x),
  545. y = ifelse(is.null(annotation$y), Inf, annotation$y),
  546. label = annotation$label,
  547. hjust = ifelse(is.null(annotation$hjust), 0.5, annotation$hjust),
  548. vjust = ifelse(is.null(annotation$vjust), 1, annotation$vjust),
  549. size = ifelse(is.null(annotation$size), 3, annotation$size),
  550. color = ifelse(is.null(annotation$color), "black", annotation$color)
  551. )
  552. }
  553. }
  554. # Add error bars if specified
  555. if (!is.null(config$error_bar) && config$error_bar) {
  556. # Check if custom columns are provided for y_mean and y_sd, or use the defaults
  557. y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
  558. config$error_bar_params$y_mean_col
  559. } else {
  560. paste0("mean_", config$y_var)
  561. }
  562. y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
  563. config$error_bar_params$y_sd_col
  564. } else {
  565. paste0("sd_", config$y_var)
  566. }
  567. # Use rlang to handle custom error bar calculations
  568. if (!is.null(config$error_bar_params$custom_error_bar)) {
  569. custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
  570. custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
  571. plot <- plot + geom_errorbar(
  572. aes(
  573. ymin = !!custom_ymin_expr,
  574. ymax = !!custom_ymax_expr
  575. ),
  576. color = config$error_bar_params$color,
  577. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  578. )
  579. } else {
  580. # If no custom error bar formula, use the default or dynamic ones
  581. if (!is.null(config$color_var) && config$color_var %in% colnames(config$df)) {
  582. # Only use color_var if it's present in the dataframe
  583. plot <- plot + geom_errorbar(
  584. aes(
  585. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  586. ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
  587. color = .data[[config$color_var]]
  588. ),
  589. linewidth = 0.1
  590. )
  591. } else {
  592. # If color_var is missing, fall back to a default color or none
  593. plot <- plot + geom_errorbar(
  594. aes(
  595. ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
  596. ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
  597. ),
  598. color = config$error_bar_params$color, # use the provided color or default
  599. linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
  600. )
  601. }
  602. }
  603. # Add the center point if the option is provided
  604. if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
  605. if (!is.null(config$error_bar_params$color)) {
  606. plot <- plot + geom_point(
  607. mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
  608. color = config$error_bar_params$color,
  609. shape = 16,
  610. inherit.aes = FALSE # Prevent overriding global aesthetics
  611. )
  612. } else {
  613. plot <- plot + geom_point(
  614. mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
  615. shape = 16,
  616. inherit.aes = FALSE # Prevent overriding global aesthetics
  617. )
  618. }
  619. }
  620. }
  621. # Convert ggplot to plotly for interactive version
  622. plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
  623. # Store both static and interactive versions
  624. static_plots[[i]] <- plot
  625. plotly_plots[[i]] <- plotly_plot
  626. }
  627. # Print the plots in the current group to the PDF
  628. if (!is.null(grid_layout)) {
  629. # Set grid_ncol to 1 if not specified
  630. if (is.null(grid_layout$ncol)) {
  631. grid_layout$ncol <- 1
  632. }
  633. # If ncol is set but nrow is not, calculate nrow dynamically based on num_plots
  634. if (!is.null(grid_layout$ncol) && is.null(grid_layout$nrow)) {
  635. num_plots <- length(static_plots)
  636. nrow <- ceiling(num_plots / grid_layout$ncol)
  637. # message("No nrow provided, automatically using nrow = ", nrow)
  638. grid_layout$nrow <- nrow
  639. }
  640. total_spots <- grid_layout$nrow * grid_layout$ncol
  641. num_plots <- length(static_plots)
  642. # if (num_plots < total_spots) {
  643. # message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
  644. # static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
  645. # }
  646. grid.arrange(
  647. grobs = static_plots,
  648. ncol = grid_layout$ncol,
  649. nrow = grid_layout$nrow
  650. )
  651. } else {
  652. # Print individual plots on separate pages if no grid layout
  653. for (plot in static_plots) {
  654. print(plot)
  655. }
  656. }
  657. }
  658. # Close the PDF device after all plots are done
  659. dev.off()
  660. # Save HTML file with interactive plots if needed
  661. out_html_file <- file.path(out_dir, paste0(filename, ".html"))
  662. message("Saving combined HTML file: ", out_html_file)
  663. htmltools::save_html(
  664. htmltools::tagList(plotly_plots),
  665. file = out_html_file
  666. )
  667. }
  668. generate_scatter_plot <- function(plot, config) {
  669. # Define the points
  670. shape <- if (!is.null(config$shape)) config$shape else 3
  671. size <- if (!is.null(config$size)) config$size else 1.5
  672. position <-
  673. if (!is.null(config$position) && config$position == "jitter") {
  674. position_jitter(width = 0.4, height = 0.1)
  675. } else {
  676. "identity"
  677. }
  678. plot <- plot + geom_point(
  679. shape = shape,
  680. size = size,
  681. position = position
  682. )
  683. # Add a cyan point for the reference data for correlation plots
  684. if (!is.null(config$cyan_points) && config$cyan_points) {
  685. plot <- plot + geom_point(
  686. data = config$df_reference,
  687. mapping = aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
  688. color = "cyan",
  689. shape = 3,
  690. size = 0.5,
  691. inherit.aes = FALSE
  692. )
  693. }
  694. # Add linear regression line if specified
  695. if (!is.null(config$lm_line)) {
  696. # Extract necessary values
  697. x_min <- config$lm_line$x_min
  698. x_max <- config$lm_line$x_max
  699. intercept <- config$lm_line$intercept
  700. slope <- config$lm_line$slope
  701. color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue")
  702. linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
  703. # Ensure none of the values are NA and calculate y-values
  704. if (!is.na(x_min) && !is.na(x_max) && !is.na(intercept) && !is.na(slope)) {
  705. y_min <- intercept + slope * x_min
  706. y_max <- intercept + slope * x_max
  707. # Ensure y-values are within y-limits (if any)
  708. if (!is.null(config$ylim_vals)) {
  709. y_min_within_limits <- y_min >= config$ylim_vals[1] && y_min <= config$ylim_vals[2]
  710. y_max_within_limits <- y_max >= config$ylim_vals[1] && y_max <= config$ylim_vals[2]
  711. # Adjust or skip based on whether the values fall within limits
  712. if (y_min_within_limits && y_max_within_limits) {
  713. # Ensure x-values are also valid
  714. if (!is.na(x_min) && !is.na(x_max)) {
  715. plot <- plot + annotate(
  716. "segment",
  717. x = x_min,
  718. xend = x_max,
  719. y = y_min,
  720. yend = y_max,
  721. color = color,
  722. linewidth = linewidth
  723. )
  724. }
  725. } else {
  726. message("Skipping linear modeling line due to y-values outside of limits.")
  727. }
  728. } else {
  729. # If no y-limits are provided, proceed with the annotation
  730. plot <- plot + annotate(
  731. "segment",
  732. x = x_min,
  733. xend = x_max,
  734. y = y_min,
  735. yend = y_max,
  736. color = color,
  737. linewidth = linewidth
  738. )
  739. }
  740. } else {
  741. message("Skipping linear modeling line due to missing or invalid values.")
  742. }
  743. }
  744. # Add SD Bands if specified
  745. if (!is.null(config$sd_band)) {
  746. plot <- plot +
  747. annotate(
  748. "rect",
  749. xmin = -Inf, xmax = Inf,
  750. ymin = config$sd_band, ymax = Inf,
  751. fill = ifelse(!is.null(config$fill_positive), config$fill_positive, "#542788"),
  752. alpha = ifelse(!is.null(config$alpha_positive), config$alpha_positive, 0.3)
  753. ) +
  754. annotate(
  755. "rect",
  756. xmin = -Inf, xmax = Inf,
  757. ymin = -config$sd_band, ymax = -Inf,
  758. fill = ifelse(!is.null(config$fill_negative), config$fill_negative, "orange"),
  759. alpha = ifelse(!is.null(config$alpha_negative), config$alpha_negative, 0.3)
  760. ) +
  761. geom_hline(
  762. yintercept = c(-config$sd_band, config$sd_band),
  763. color = ifelse(!is.null(config$hl_color), config$hl_color, "black")
  764. )
  765. }
  766. # Add rectangles if specified
  767. if (!is.null(config$rectangles)) {
  768. for (rect in config$rectangles) {
  769. plot <- plot + annotate(
  770. "rect",
  771. xmin = rect$xmin,
  772. xmax = rect$xmax,
  773. ymin = rect$ymin,
  774. ymax = rect$ymax,
  775. fill = ifelse(is.null(rect$fill), NA, rect$fill),
  776. color = ifelse(is.null(rect$color), "black", rect$color),
  777. alpha = ifelse(is.null(rect$alpha), 0.1, rect$alpha)
  778. )
  779. }
  780. }
  781. # Customize X-axis if specified
  782. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  783. # Check if x_var is factor or character (for discrete x-axis)
  784. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  785. plot <- plot +
  786. scale_x_discrete(
  787. name = config$x_label,
  788. breaks = config$x_breaks,
  789. labels = config$x_labels
  790. )
  791. } else {
  792. plot <- plot +
  793. scale_x_continuous(
  794. name = config$x_label,
  795. breaks = config$x_breaks,
  796. labels = config$x_labels
  797. )
  798. }
  799. }
  800. # Set Y-axis limits if specified
  801. if (!is.null(config$ylim_vals)) {
  802. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  803. }
  804. return(plot)
  805. }
  806. generate_boxplot <- function(plot, config) {
  807. # Convert x_var to a factor within aes mapping
  808. plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
  809. # Customize X-axis if specified
  810. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  811. # Check if x_var is factor or character (for discrete x-axis)
  812. if (is.factor(plot$data[[config$x_var]]) || is.character(plot$data[[config$x_var]])) {
  813. plot <- plot +
  814. scale_x_discrete(
  815. name = config$x_label,
  816. breaks = config$x_breaks,
  817. labels = config$x_labels
  818. )
  819. } else {
  820. plot <- plot +
  821. scale_x_continuous(
  822. name = config$x_label,
  823. breaks = config$x_breaks,
  824. labels = config$x_labels
  825. )
  826. }
  827. }
  828. return(plot)
  829. }
  830. generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df_after = NULL,
  831. plot_type = "scatter", stages = c("before", "after")) {
  832. plot_configs <- list()
  833. for (var in variables) {
  834. for (stage in stages) {
  835. df_plot <- if (stage == "before") df_before else df_after
  836. # Check for non-finite values in the y-variable
  837. # df_plot_filtered <- df_plot %>% filter(is.finite(.data[[var]]))
  838. # Adjust settings based on plot_type
  839. plot_config <- list(
  840. df = df_plot,
  841. x_var = "scan",
  842. y_var = var,
  843. plot_type = plot_type,
  844. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  845. color_var = "conc_num_factor_factor",
  846. size = 0.2,
  847. error_bar = (plot_type == "scatter"),
  848. legend_position = "bottom",
  849. filter_na = TRUE
  850. )
  851. # Add config to plots list
  852. plot_configs <- append(plot_configs, list(plot_config))
  853. }
  854. }
  855. return(list(plots = plot_configs))
  856. }
  857. generate_interaction_plot_configs <- function(df_summary, df_interactions, type) {
  858. # Define the y-limits for the plots
  859. limits_map <- list(
  860. L = c(0, 130),
  861. K = c(-20, 160),
  862. r = c(0, 1),
  863. AUC = c(0, 12500)
  864. )
  865. stats_plot_configs <- list()
  866. stats_boxplot_configs <- list()
  867. delta_plot_configs <- list()
  868. # Overall statistics plots
  869. OrfRep <- first(df_summary$OrfRep) # this should correspond to the reference strain
  870. for (plot_type in c("scatter", "box")) {
  871. for (var in names(limits_map)) {
  872. y_limits <- limits_map[[var]]
  873. y_span <- y_limits[2] - y_limits[1]
  874. # Common plot configuration
  875. plot_config <- list(
  876. df = df_summary,
  877. plot_type = plot_type,
  878. x_var = "conc_num_factor_factor",
  879. y_var = var,
  880. shape = 16,
  881. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  882. coord_cartesian = y_limits,
  883. x_breaks = unique(df_summary$conc_num_factor_factor),
  884. x_labels = as.character(unique(df_summary$conc_num))
  885. )
  886. # Add specific configurations for scatter and box plots
  887. if (plot_type == "scatter") {
  888. plot_config$title <- sprintf("%s Scatter RF for %s with SD", OrfRep, var)
  889. plot_config$error_bar <- TRUE
  890. plot_config$error_bar_params <- list(
  891. color = "red",
  892. mean_point = TRUE,
  893. y_mean_col = paste0("mean_mean_", var),
  894. y_sd_col = paste0("mean_sd_", var)
  895. )
  896. plot_config$position <- "jitter"
  897. # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
  898. annotations <- list(
  899. list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
  900. list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
  901. list(x = 0.25, y = y_limits[1], label = " SM =", size = 4)
  902. )
  903. for (x_val in unique(df_summary$conc_num_factor_factor)) {
  904. current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
  905. annotations <- append(annotations, list(
  906. list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
  907. list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
  908. list(x = x_val, y = y_limits[1], label = first(current_df$SM, default = 0), size = 4)
  909. ))
  910. }
  911. plot_config$annotations <- annotations
  912. stats_plot_configs <- append(stats_plot_configs, list(plot_config))
  913. } else if (plot_type == "box") {
  914. plot_config$title <- sprintf("%s Box RF for %s with SD", OrfRep, var)
  915. plot_config$position <- "dodge"
  916. stats_boxplot_configs <- append(stats_boxplot_configs, list(plot_config))
  917. }
  918. }
  919. }
  920. # Delta interaction plots
  921. delta_limits_map <- list(
  922. L = c(-60, 60),
  923. K = c(-60, 60),
  924. r = c(-0.6, 0.6),
  925. AUC = c(-6000, 6000)
  926. )
  927. # Select the data grouping by data type
  928. if (type == "reference") {
  929. group_vars <- c("OrfRep", "Gene", "num")
  930. } else if (type == "deletion") {
  931. group_vars <- c("OrfRep", "Gene")
  932. }
  933. grouped_data <- df_interactions %>%
  934. group_by(across(all_of(group_vars))) %>%
  935. group_split()
  936. for (group_data in grouped_data) {
  937. # Build the plot title
  938. OrfRep <- first(group_data$OrfRep)
  939. Gene <- first(group_data$Gene)
  940. if (type == "reference") {
  941. num <- if ("num" %in% names(group_data)) first(group_data$num) else ""
  942. OrfRepTitle <- paste(OrfRep, Gene, num, sep = "_")
  943. } else if (type == "deletion") {
  944. OrfRepTitle <- OrfRep
  945. }
  946. for (var in names(delta_limits_map)) {
  947. y_limits <- delta_limits_map[[var]]
  948. y_span <- y_limits[2] - y_limits[1]
  949. WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
  950. Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
  951. Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
  952. R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
  953. NG_value <- first(group_data$NG, default = 0)
  954. DB_value <- first(group_data$DB, default = 0)
  955. SM_value <- first(group_data$SM, default = 0)
  956. lm_intercept_col <- paste0("lm_intercept_", var)
  957. lm_slope_col <- paste0("lm_slope_", var)
  958. lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
  959. lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
  960. plot_config <- list(
  961. df = group_data,
  962. plot_type = "scatter",
  963. x_var = "conc_num_factor_factor",
  964. y_var = paste0("Delta_", var),
  965. x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
  966. shape = 16,
  967. title = paste(OrfRepTitle, Gene, sep = " "),
  968. title_size = rel(1.4),
  969. coord_cartesian = y_limits,
  970. annotations = list(
  971. list(x = 1, y = y_limits[2] - 0.1 * y_span, label = paste(" ZShift =", round(Z_Shift_value, 2))),
  972. list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste(" lm ZScore =", round(Z_lm_value, 2))),
  973. # list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste(" R-squared =", round(R_squared_value, 2))),
  974. list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("NG =", NG_value)),
  975. list(x = 1, y = y_limits[1] + 0.05 * y_span, label = paste("DB =", DB_value)),
  976. list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
  977. ),
  978. error_bar = TRUE,
  979. error_bar_params = list(
  980. custom_error_bar = list(
  981. ymin = paste0("0 - 2 * WT_sd_", var),
  982. ymax = paste0("0 + 2 * WT_sd_", var)
  983. ),
  984. color = "gray70",
  985. linewidth = 0.5
  986. ),
  987. x_breaks = unique(group_data$conc_num_factor_factor),
  988. x_labels = as.character(unique(group_data$conc_num)),
  989. ylim_vals = y_limits,
  990. filter_na = TRUE,
  991. lm_line = list(
  992. intercept = lm_intercept_value,
  993. slope = lm_slope_value,
  994. color = "blue",
  995. linewidth = 0.8,
  996. x_min = min(as.numeric(group_data$conc_num_factor_factor)),
  997. x_max = max(as.numeric(group_data$conc_num_factor_factor))
  998. )
  999. )
  1000. delta_plot_configs <- append(delta_plot_configs, list(plot_config))
  1001. }
  1002. }
  1003. # Group delta plots in chunks of 12 per page
  1004. chunk_size <- 12
  1005. delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
  1006. return(c(
  1007. list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
  1008. list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
  1009. lapply(delta_plot_chunks, function(chunk) list(grid_layout = list(ncol = 4), plots = chunk))
  1010. ))
  1011. }
  1012. generate_rank_plot_configs <- function(df, is_lm = FALSE, adjust = FALSE, filter_na = FALSE, overlap_color = FALSE) {
  1013. sd_bands <- c(1, 2, 3)
  1014. plot_configs <- list()
  1015. variables <- c("L", "K")
  1016. # Adjust (if necessary) and rank columns
  1017. for (variable in variables) {
  1018. if (adjust) {
  1019. df[[paste0("Avg_Zscore_", variable)]] <- ifelse(is.na(df[[paste0("Avg_Zscore_", variable)]]), 0.001, df[[paste0("Avg_Zscore_", variable)]])
  1020. df[[paste0("Z_lm_", variable)]] <- ifelse(is.na(df[[paste0("Z_lm_", variable)]]), 0.001, df[[paste0("Z_lm_", variable)]])
  1021. }
  1022. df[[paste0("Rank_", variable)]] <- rank(df[[paste0("Avg_Zscore_", variable)]], na.last = "keep")
  1023. df[[paste0("Rank_lm_", variable)]] <- rank(df[[paste0("Z_lm_", variable)]], na.last = "keep")
  1024. }
  1025. # Helper function to create a rank plot configuration
  1026. create_plot_config <- function(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE) {
  1027. num_enhancers <- sum(df[[zscore_var]] >= sd_band, na.rm = TRUE)
  1028. num_suppressors <- sum(df[[zscore_var]] <= -sd_band, na.rm = TRUE)
  1029. # Default plot config
  1030. plot_config <- list(
  1031. df = df,
  1032. x_var = rank_var,
  1033. y_var = zscore_var,
  1034. x_label = "Rank",
  1035. y_label = y_label,
  1036. plot_type = "scatter",
  1037. title = paste(y_label, "vs. Rank for", variable, "above", sd_band, "SD"),
  1038. sd_band = sd_band,
  1039. fill_positive = "#542788",
  1040. fill_negative = "orange",
  1041. alpha_positive = 0.3,
  1042. alpha_negative = 0.3,
  1043. shape = 3,
  1044. size = 0.1,
  1045. filter_na = filter_na,
  1046. legend_position = "none"
  1047. )
  1048. # Selectively add annotations
  1049. if (with_annotations) {
  1050. plot_config$annotations <- list(
  1051. list(
  1052. x = nrow(df) / 2,
  1053. y = 10,
  1054. label = paste("Deletion Enhancers =", num_enhancers)
  1055. ),
  1056. list(
  1057. x = nrow(df) / 2,
  1058. y = -10,
  1059. label = paste("Deletion Suppressors =", num_suppressors)
  1060. )
  1061. )
  1062. }
  1063. return(plot_config)
  1064. }
  1065. # Generate plots for each variable
  1066. for (variable in variables) {
  1067. rank_var <- if (is_lm) paste0("Rank_lm_", variable) else paste0("Rank_", variable)
  1068. zscore_var <- if (is_lm) paste0("Z_lm_", variable) else paste0("Avg_Zscore_", variable)
  1069. y_label <- if (is_lm) paste("Int Z score", variable) else paste("Avg Z score", variable)
  1070. # Loop through SD bands
  1071. for (sd_band in sd_bands) {
  1072. # Create plot with annotations
  1073. plot_configs[[length(plot_configs) + 1]] <-
  1074. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = TRUE)
  1075. # Create plot without annotations
  1076. plot_configs[[length(plot_configs) + 1]] <-
  1077. create_plot_config(variable, rank_var, zscore_var, y_label, sd_band, filter_na, with_annotations = FALSE)
  1078. }
  1079. }
  1080. # Group delta plots in chunks of 6 per page
  1081. chunk_size <- 6
  1082. plot_chunks <- split(plot_configs, ceiling(seq_along(plot_configs) / chunk_size))
  1083. return(c(
  1084. lapply(plot_chunks, function(chunk) list(grid_layout = list(ncol = 3), plots = chunk))
  1085. ))
  1086. }
  1087. generate_correlation_plot_configs <- function(df, df_reference) {
  1088. # Define relationships for different-variable correlations
  1089. relationships <- list(
  1090. list(x = "L", y = "K"),
  1091. list(x = "L", y = "r"),
  1092. list(x = "L", y = "AUC"),
  1093. list(x = "K", y = "r"),
  1094. list(x = "K", y = "AUC"),
  1095. list(x = "r", y = "AUC")
  1096. )
  1097. # This filtering was in the original script
  1098. # df_reference <- df_reference %>%
  1099. # filter(!is.na(Z_lm_L))
  1100. plot_configs <- list()
  1101. # Iterate over the option to highlight cyan points (TRUE/FALSE)
  1102. highlight_cyan_options <- c(FALSE, TRUE)
  1103. for (highlight_cyan in highlight_cyan_options) {
  1104. for (rel in relationships) {
  1105. # Extract relevant variable names for Z_lm values
  1106. x_var <- paste0("Z_lm_", rel$x)
  1107. y_var <- paste0("Z_lm_", rel$y)
  1108. # Extract the R-squared, intercept, and slope from the df
  1109. relationship_name <- paste0(rel$x, "_vs_", rel$y)
  1110. intercept <- df[[paste0("lm_intercept_", rel$x)]]
  1111. slope <- df[[paste0("lm_slope_", rel$x)]]
  1112. r_squared <- df[[paste0("lm_R_squared_", rel$x)]]
  1113. # Generate the label for the plot
  1114. plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
  1115. # Construct plot config
  1116. plot_config <- list(
  1117. df = df,
  1118. df_reference = df_reference,
  1119. x_var = x_var,
  1120. y_var = y_var,
  1121. plot_type = "scatter",
  1122. title = plot_label,
  1123. annotations = list(
  1124. list(
  1125. x = mean(df[[x_var]], na.rm = TRUE),
  1126. y = mean(df[[y_var]], na.rm = TRUE),
  1127. label = paste("R-squared =", round(r_squared, 3))
  1128. )
  1129. ),
  1130. lm_line = list(
  1131. intercept = intercept,
  1132. slope = slope,
  1133. color = "tomato3"
  1134. ),
  1135. color = "gray70",
  1136. filter_na = TRUE,
  1137. cyan_points = highlight_cyan # include cyan points or not based on the loop
  1138. )
  1139. plot_configs <- append(plot_configs, list(plot_config))
  1140. }
  1141. }
  1142. return(list(plots = plot_configs))
  1143. }
  1144. main <- function() {
  1145. lapply(names(args$experiments), function(exp_name) {
  1146. exp <- args$experiments[[exp_name]]
  1147. exp_path <- exp$path
  1148. exp_sd <- exp$sd
  1149. out_dir <- file.path(exp_path, "zscores")
  1150. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  1151. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  1152. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  1153. # Each list of plots corresponds to a separate file
  1154. message("Loading and filtering data for experiment: ", exp_name)
  1155. df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
  1156. update_gene_names(args$sgd_gene_list) %>%
  1157. as_tibble()
  1158. l_vs_k_plot_configs <- list(
  1159. plots = list(
  1160. list(
  1161. df = df,
  1162. x_var = "L",
  1163. y_var = "K",
  1164. plot_type = "scatter",
  1165. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1166. title = "Raw L vs K before quality control",
  1167. color_var = "conc_num_factor_factor",
  1168. error_bar = FALSE,
  1169. legend_position = "right"
  1170. )
  1171. )
  1172. )
  1173. message("Calculating summary statistics before quality control")
  1174. df_stats <- calculate_summary_stats( # formerly X_stats_ALL
  1175. df = df,
  1176. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1177. group_vars = c("conc_num", "conc_num_factor_factor"))$df_with_stats
  1178. frequency_delta_bg_plot_configs <- list(
  1179. plots = list(
  1180. list(
  1181. df = df_stats,
  1182. x_var = "delta_bg",
  1183. y_var = NULL,
  1184. plot_type = "density",
  1185. title = "Density plot for Delta Background by [Drug] (All Data)",
  1186. color_var = "conc_num_factor_factor",
  1187. x_label = "Delta Background",
  1188. y_label = "Density",
  1189. error_bar = FALSE,
  1190. legend_position = "right"
  1191. ),
  1192. list(
  1193. df = df_stats,
  1194. x_var = "delta_bg",
  1195. y_var = NULL,
  1196. plot_type = "bar",
  1197. title = "Bar plot for Delta Background by [Drug] (All Data)",
  1198. color_var = "conc_num_factor_factor",
  1199. x_label = "Delta Background",
  1200. y_label = "Count",
  1201. error_bar = FALSE,
  1202. legend_position = "right"
  1203. )
  1204. )
  1205. )
  1206. message("Filtering rows above delta background tolerance for plotting")
  1207. df_above_tolerance <- df %>% filter(DB == 1)
  1208. above_threshold_plot_configs <- list(
  1209. plots = list(
  1210. list(
  1211. df = df_above_tolerance,
  1212. x_var = "L",
  1213. y_var = "K",
  1214. plot_type = "scatter",
  1215. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1216. title = paste("Raw L vs K for strains above Delta Background threshold of",
  1217. round(df_above_tolerance$delta_bg_tolerance[[1]], 3), "or above"),
  1218. color_var = "conc_num_factor_factor",
  1219. position = "jitter",
  1220. annotations = list(
  1221. list(
  1222. x = median(df_above_tolerance$L, na.rm = TRUE) / 2,
  1223. y = median(df_above_tolerance$K, na.rm = TRUE) / 2,
  1224. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  1225. )
  1226. ),
  1227. error_bar = FALSE,
  1228. legend_position = "right"
  1229. )
  1230. )
  1231. )
  1232. message("Setting rows above delta background tolerance to NA")
  1233. df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
  1234. message("Calculating summary statistics across all strains")
  1235. ss <- calculate_summary_stats(
  1236. df = df_na,
  1237. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1238. group_vars = c("conc_num", "conc_num_factor_factor"))
  1239. df_na_ss <- ss$summary_stats
  1240. df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
  1241. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  1242. # This can help bypass missing values ggplot warnings during testing
  1243. df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
  1244. message("Calculating summary statistics excluding zero values")
  1245. df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
  1246. df_no_zeros_stats <- calculate_summary_stats(
  1247. df = df_no_zeros,
  1248. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1249. group_vars = c("conc_num", "conc_num_factor_factor")
  1250. )$df_with_stats
  1251. message("Filtering by 2SD of K")
  1252. df_na_within_2sd_k <- df_na_stats %>%
  1253. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  1254. df_na_outside_2sd_k <- df_na_stats %>%
  1255. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  1256. message("Calculating summary statistics for L within 2SD of K")
  1257. # TODO We're omitting the original z_max calculation, not sure if needed?
  1258. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", # formerly X_stats_BY_L_within_2SD_K
  1259. group_vars = c("conc_num", "conc_num_factor_factor"))$summary_stats
  1260. write.csv(ss,
  1261. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2SD_K.csv"),
  1262. row.names = FALSE)
  1263. message("Calculating summary statistics for L outside 2SD of K")
  1264. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", # formerly X_stats_BY_L_outside_2SD_K
  1265. group_vars = c("conc_num", "conc_num_factor_factor"))
  1266. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  1267. write.csv(ss$summary_stats,
  1268. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2SD_K.csv"),
  1269. row.names = FALSE)
  1270. plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
  1271. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1272. df_before = df_stats,
  1273. df_after = df_na_stats_filtered
  1274. )
  1275. plate_analysis_boxplot_configs <- generate_plate_analysis_plot_configs(
  1276. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1277. df_before = df_stats,
  1278. df_after = df_na_stats_filtered,
  1279. plot_type = "box"
  1280. )
  1281. plate_analysis_no_zeros_plot_configs <- generate_plate_analysis_plot_configs(
  1282. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1283. stages = c("after"), # Only after QC
  1284. df_after = df_no_zeros_stats
  1285. )
  1286. plate_analysis_no_zeros_boxplot_configs <- generate_plate_analysis_plot_configs(
  1287. variables = c("L", "K", "r", "AUC", "delta_bg"),
  1288. stages = c("after"), # Only after QC
  1289. df_after = df_no_zeros_stats,
  1290. plot_type = "box"
  1291. )
  1292. l_outside_2sd_k_plot_configs <- list(
  1293. plots = list(
  1294. list(
  1295. df = df_na_l_outside_2sd_k_stats,
  1296. x_var = "L",
  1297. y_var = "K",
  1298. plot_type = "scatter",
  1299. title = "Raw L vs K for strains falling outside 2 SD of the K mean at each Conc",
  1300. color_var = "conc_num_factor_factor",
  1301. position = "jitter",
  1302. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1303. annotations = list(
  1304. list(
  1305. x = median(df_na_l_outside_2sd_k_stats$L, na.rm = TRUE) / 2,
  1306. y = median(df_na_l_outside_2sd_k_stats$K, na.rm = TRUE) / 2,
  1307. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats))
  1308. )
  1309. ),
  1310. error_bar = FALSE,
  1311. legend_position = "right"
  1312. )
  1313. )
  1314. )
  1315. delta_bg_outside_2sd_k_plot_configs <- list(
  1316. plots = list(
  1317. list(
  1318. df = df_na_l_outside_2sd_k_stats,
  1319. x_var = "delta_bg",
  1320. x_label = "Delta Background",
  1321. y_var = "K",
  1322. plot_type = "scatter",
  1323. title = "Delta Background vs K for strains falling outside 2 SD of K",
  1324. color_var = "conc_num_factor_factor",
  1325. position = "jitter",
  1326. tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
  1327. annotations = list(
  1328. list(
  1329. x = 0.05,
  1330. y = 0.95,
  1331. hjust = 0,
  1332. vjust = 1,
  1333. label = paste("Total strains:", nrow(df_na_l_outside_2sd_k_stats)),
  1334. size = 5
  1335. )
  1336. ),
  1337. error_bar = FALSE,
  1338. legend_position = "right"
  1339. )
  1340. )
  1341. )
  1342. message("Generating quality control plots in parallel")
  1343. # future::plan(future::multicore, workers = parallel::detectCores())
  1344. future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
  1345. plot_configs <- list(
  1346. list(out_dir = out_dir_qc, filename = "L_vs_K_before_quality_control",
  1347. plot_configs = l_vs_k_plot_configs, page_width = 12, page_height = 8),
  1348. list(out_dir = out_dir_qc, filename = "frequency_delta_background",
  1349. plot_configs = frequency_delta_bg_plot_configs, page_width = 12, page_height = 8),
  1350. list(out_dir = out_dir_qc, filename = "L_vs_K_above_threshold",
  1351. plot_configs = above_threshold_plot_configs, page_width = 12, page_height = 8),
  1352. list(out_dir = out_dir_qc, filename = "plate_analysis",
  1353. plot_configs = plate_analysis_plot_configs, page_width = 14, page_height = 9),
  1354. list(out_dir = out_dir_qc, filename = "plate_analysis_boxplots",
  1355. plot_configs = plate_analysis_boxplot_configs, page_width = 18, page_height = 9),
  1356. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros",
  1357. plot_configs = plate_analysis_no_zeros_plot_configs, page_width = 14, page_height = 9),
  1358. list(out_dir = out_dir_qc, filename = "plate_analysis_no_zeros_boxplots",
  1359. plot_configs = plate_analysis_no_zeros_boxplot_configs, page_width = 18, page_height = 9),
  1360. list(out_dir = out_dir_qc, filename = "L_vs_K_for_strains_2SD_outside_mean_K",
  1361. plot_configs = l_outside_2sd_k_plot_configs, page_width = 10, page_height = 8),
  1362. list(out_dir = out_dir_qc, filename = "delta_background_vs_K_for_strains_2SD_outside_mean_K",
  1363. plot_configs = delta_bg_outside_2sd_k_plot_configs, page_width = 10, page_height = 8)
  1364. )
  1365. # Parallelize background and quality control plot generation
  1366. # furrr::future_map(plot_configs, function(config) {
  1367. # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
  1368. # page_width = config$page_width, page_height = config$page_height)
  1369. # }, .options = furrr_options(seed = TRUE))
  1370. # Loop over background strains
  1371. # TODO currently only tested against one strain, if we want to do multiple strains we'll
  1372. # have to rename or group the output files by dir or something so they don't get clobbered
  1373. bg_strains <- c("YDL227C")
  1374. lapply(bg_strains, function(strain) {
  1375. message("Processing background strain: ", strain)
  1376. # Handle missing data by setting zero values to NA
  1377. # and then removing any rows with NA in L col
  1378. df_bg <- df_na %>%
  1379. filter(OrfRep == strain) %>%
  1380. mutate(
  1381. L = if_else(L == 0, NA, L),
  1382. K = if_else(K == 0, NA, K),
  1383. r = if_else(r == 0, NA, r),
  1384. AUC = if_else(AUC == 0, NA, AUC)
  1385. ) %>%
  1386. filter(!is.na(L))
  1387. message("Calculating background strain summary statistics")
  1388. ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
  1389. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
  1390. summary_stats_bg <- ss_bg$summary_stats
  1391. df_bg_stats <- ss_bg$df_with_stats
  1392. write.csv(
  1393. summary_stats_bg,
  1394. file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
  1395. row.names = FALSE)
  1396. message("Setting missing reference values to the highest theoretical value at each drug conc for L")
  1397. df_reference <- df_na_stats %>% # formerly X2_RF
  1398. filter(OrfRep == strain) %>%
  1399. filter(!is.na(L)) %>%
  1400. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1401. mutate(
  1402. max_l_theoretical = max(max_L, na.rm = TRUE),
  1403. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1404. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, 0),
  1405. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1406. ungroup()
  1407. message("Calculating reference strain summary statistics")
  1408. df_reference_summary_stats <- calculate_summary_stats( # formerly X_stats_X2_RF
  1409. df = df_reference,
  1410. variables = c("L", "K", "r", "AUC"),
  1411. group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor")
  1412. )$df_with_stats
  1413. # Summarise statistics for error bars
  1414. df_reference_summary_stats <- df_reference_summary_stats %>%
  1415. group_by(OrfRep, Drug, conc_num, conc_num_factor_factor) %>%
  1416. mutate(
  1417. mean_mean_L = first(mean_L),
  1418. mean_sd_L = first(sd_L),
  1419. mean_mean_K = first(mean_K),
  1420. mean_sd_K = first(sd_K),
  1421. mean_mean_r = first(mean_r),
  1422. mean_sd_r = first(sd_r),
  1423. mean_mean_AUC = first(mean_AUC),
  1424. mean_sd_AUC = first(sd_AUC),
  1425. .groups = "drop"
  1426. )
  1427. message("Calculating reference strain interaction summary statistics") # formerly X_stats_interaction
  1428. df_reference_interaction_stats <- calculate_summary_stats(
  1429. df = df_reference,
  1430. variables = c("L", "K", "r", "AUC"),
  1431. group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
  1432. )$df_with_stats
  1433. message("Calculating reference strain interaction scores")
  1434. reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
  1435. df_reference_interactions_joined <- reference_results$full_data
  1436. df_reference_interactions <- reference_results$interactions
  1437. write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
  1438. write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
  1439. message("Generating reference interaction plots")
  1440. reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
  1441. generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
  1442. message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
  1443. df_deletion <- df_na_stats %>% # formerly X2
  1444. filter(OrfRep != strain) %>%
  1445. filter(!is.na(L)) %>%
  1446. group_by(OrfRep, Gene, conc_num, conc_num_factor_factor) %>%
  1447. mutate(
  1448. max_l_theoretical = max(max_L, na.rm = TRUE),
  1449. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  1450. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  1451. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  1452. ungroup()
  1453. message("Calculating deletion strain(s) interaction summary statistics")
  1454. df_deletion_stats <- calculate_summary_stats(
  1455. df = df_deletion,
  1456. variables = c("L", "K", "r", "AUC"),
  1457. group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
  1458. )$df_with_stats
  1459. message("Calculating deletion strain(s) interactions scores")
  1460. deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, "deletion")
  1461. df_interactions <- deletion_results$interactions
  1462. df_interactions_joined <- deletion_results$full_data
  1463. write.csv(deletion_results$calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
  1464. write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
  1465. message("Generating deletion interaction plots")
  1466. deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
  1467. generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
  1468. message("Writing enhancer/suppressor csv files")
  1469. interaction_threshold <- 2 # TODO add to study config?
  1470. enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
  1471. suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
  1472. enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
  1473. suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
  1474. enhancers_L <- df_interactions[enhancer_condition_L, ]
  1475. suppressors_L <- df_interactions[suppressor_condition_L, ]
  1476. enhancers_K <- df_interactions[enhancer_condition_K, ]
  1477. suppressors_K <- df_interactions[suppressor_condition_K, ]
  1478. enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1479. enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1480. write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
  1481. write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
  1482. write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
  1483. write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
  1484. write.csv(enhancers_and_suppressors_L,
  1485. file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
  1486. write.csv(enhancers_and_suppressors_K,
  1487. file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
  1488. message("Writing linear model enhancer/suppressor csv files")
  1489. lm_interaction_threshold <- 2 # TODO add to study config?
  1490. enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
  1491. suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
  1492. enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
  1493. suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
  1494. write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
  1495. write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
  1496. write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
  1497. write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
  1498. message("Generating rank plots")
  1499. rank_plot_configs <- generate_rank_plot_configs(
  1500. df_interactions,
  1501. is_lm = FALSE,
  1502. adjust = TRUE
  1503. )
  1504. generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
  1505. page_width = 18, page_height = 12)
  1506. message("Generating ranked linear model plots")
  1507. rank_lm_plot_configs <- generate_rank_plot_configs(
  1508. df_interactions,
  1509. is_lm = TRUE,
  1510. adjust = TRUE
  1511. )
  1512. generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
  1513. page_width = 18, page_height = 12)
  1514. message("Generating overlapped ranked plots")
  1515. rank_plot_filtered_configs <- generate_rank_plot_configs(
  1516. df_interactions,
  1517. is_lm = FALSE,
  1518. adjust = FALSE,
  1519. filter_na = TRUE,
  1520. overlap_color = TRUE
  1521. )
  1522. generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
  1523. page_width = 18, page_height = 12)
  1524. message("Generating overlapped ranked linear model plots")
  1525. rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
  1526. df_interactions,
  1527. is_lm = TRUE,
  1528. adjust = FALSE,
  1529. filter_na = TRUE,
  1530. overlap_color = TRUE
  1531. )
  1532. generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
  1533. page_width = 18, page_height = 12)
  1534. message("Generating correlation curve parameter pair plots")
  1535. correlation_plot_configs <- generate_correlation_plot_configs(
  1536. df_interactions,
  1537. df_reference_interactions
  1538. )
  1539. generate_and_save_plots(out_dir, "correlation_cpps", correlation_plot_configs,
  1540. page_width = 10, page_height = 7)
  1541. })
  1542. })
  1543. }
  1544. main()