Files
hartman-server/workflow/templates/qhtcp/Code/GTAtemplate.R
2024-07-24 00:06:56 -04:00

200 lines
7.8 KiB
R

#!/usr/bin/env R
# GTA (GoTermAveraging)
# Your output may not be reproducible as org.Sc.sgd.db is uploaded from Bioconductor R library and changes
#
# Updated 240724 Bryan C Roessler to improve file operations and portability
# NOTE: The script now has 2 additional OPTIONAL arguments:
# 1. Path to SGD terms file (go.terms.tab)
# 2. Path to SGD features file (gene_association.sgd)
library("stringr")
library("org.Sc.sgd.db")
library("plyr")
# Parse arguments
args <- commandArgs(TRUE)
exp_name <- args[1]
if (length(args) > 2) {
zscores_file <- args[2]
} else {
zscores_file <- "ZScores/ZScores_Interaction.csv" # https://downloads.yeastgenome.org/curation/chromosomal_feature/gene_association.sgd
}
if (length(args) > 3) {
sgd_terms_file <- args[3]
} else {
sgd_terms_file <- "../Code/go_terms.tab"
}
if (length(args) > 4) {
sgd_features_file <- args[4]
} else {
sgd_features_file <- "../Code/gene_association.sgd" # https://downloads.yeastgenome.org/curation/chromosomal_feature/gene_association.sgd
}
if (length(args) > 5) {
output_dir <- args[5]
} else {
output_dir <- "../GTAresults" # https://downloads.yeastgenome.org/curation/chromosomal_feature/gene_association.sgd
}
# # Set SGDgeneList file path
# if (length(args) > 4) {
# SGDgeneList <- args[4]
# } else {
# SGDgeneList <- "../Code/SGD_features.tab"
#Begin for loop for experiments in this study-----------------ZScores_Interaction.csv
for(m in 1:length(zscores_file)){
#zscores_file <- paste(Wstudy,"/",expName[m],'/ZScores/ZScores_Interaction.csv',sep="") #ArgsScore[1]
X <- read.csv(file = zscores_file[m],stringsAsFactors=FALSE,header = TRUE)
if(colnames(X)[1] == "OrfRep"){
colnames(X)[1] <- "ORF"
}
#Terms is the GO term list
Terms <- read.delim(file = sgd_terms_file,header=FALSE,quote = "",col.names = c("GO_ID","GO_Term","GO_Aspect","GO_Term_Definition"))
#all ORFs associated with GO term
GO2ALLORFs <- as.list(org.Sc.sgdGO2ALLORFS)
#Gene_Association is the gene association to GO term file
Gene_Association <- read.delim(sgd_features_file,skip=8,header=FALSE,quote="",col.names = c("Database","Database_Object_ID","Database_Object_Symbol","NOT","GO_ID","Database_Reference","Evidence","With_or_From","Aspect","Database_Object_Name","Database_Object_Synonym","Database_Object_Type","taxon","Date","Assigned_By","OtherInfo","Empty"))
#Get the ORF names associated with each gene/GO term
Gene_Association$ORF <- str_split_fixed(as.character(Gene_Association$Database_Object_Synonym),"\\|",2)[,1]
#Get the numeric GO ID for matching
Gene_Association$GO_ID_Numeric <- as.integer(str_split_fixed(as.character(Gene_Association$GO_ID),"\\:",2)[,2])
#get all unique GO terms
GO_Terms <- unique(Gene_Association$GO_ID)
#create a character vector with just the ColNames of the input file to store the scores for each GO term
Col_Names_X <- colnames(X)
#create a data_frame with header from input_file
GO_Term_Averages <- X[0,]
#fill table with NAs same length as number of GO terms
GO_Term_Averages[1:length(GO_Terms),] <- NA
#change the first and second col names to GO_ID and Term
colnames(GO_Term_Averages)[1] <- "GO_ID"
colnames(GO_Term_Averages)[2] <- "Term"
#create new columns for Ontology, number genes (used to calculate the avg score), all possible genes in the GO term, and print genes/ORFs used
GO_Term_Averages$Ontology <- NA
GO_Term_Averages$NumGenes <- NA
GO_Term_Averages$AllPossibleGenes <- NA
GO_Term_Averages$Genes <- NA
GO_Term_Averages$ORFs <- NA
#create a data.frame for the standard deviation info
GO_Term_SD <- X[0,]
GO_Term_SD[1:length(GO_Terms),] <- NA
colnames(GO_Term_SD)[1] <- "GO_ID"
colnames(GO_Term_SD)[2] <- "Term"
#Loop for each GO term to get an average L and K Z score
for(i in 1:length(GO_Terms)){
#get the GO_Term
ID <- GO_Terms[i]
#Get data.frame for all genes associated to the GO Term
ID_AllGenes <- Gene_Association[Gene_Association$GO_ID == ID,]
#get a vector of just the gene names
ID_AllGenes_vector <- as.vector(GO2ALLORFs[as.character(ID)][[1]])
if(length(unique(ID_AllGenes_vector)) > 4000){
next()
}
#get the GO term character description where numeric Terms ID matches GO_Term's ID
GO_Description_Term <- as.character(Terms[Terms$GO_ID %in% ID_AllGenes$GO_ID_Numeric,]$GO_Term[1])
#get the Z scores for all genes in the GO_ID
Zscores_For_ID <- X[X$ORF %in% ID_AllGenes_vector,]
#get the Gene names and ORFs for the term
GO_Term_Averages$Genes[i] <- paste(unique(Zscores_For_ID$Gene),collapse=" | ")
GO_Term_Averages$ORFs[i] <- paste(unique(Zscores_For_ID$ORF),collapse=" | ")
#dataframe to report the averages for a GO term
#get the GO ID
GO_Term_Averages$GO_ID[i] <- as.character(ID)
#get the term name
GO_Term_Averages$Term[i] <- GO_Description_Term
#get total number of genes annotated to the Term that we have in our library
GO_Term_Averages$NumGenes[i] <- length(unique(Zscores_For_ID$ORF))
#get total number of genes annotated to the Term in SGD
GO_Term_Averages$AllPossibleGenes[i] <- length(unique(ID_AllGenes_vector))
#get the ontology of the term
GO_Term_Averages$Ontology[i] <- as.character(ID_AllGenes$Aspect[1])
#calculate the average score for every column
for(j in 3:length(X[1,])){
GO_Term_Averages[i,j] <- mean(Zscores_For_ID[,j],na.rm = TRUE)
#GO_Scores <- colMeans(Zscores_For_ID[,3:length(X[1,])])
}
#also calculate same values for the SD
GO_Term_SD$GO_ID[i] <- as.character(ID)
#get the term name
GO_Term_SD$Term[i] <- GO_Description_Term
#calculate column scores for SD
for(j in 3:length(X[1,])){
GO_Term_SD[i,j] <- sd(Zscores_For_ID[,j],na.rm = TRUE)
#GO_Scores <- colMeans(Zscores_For_ID[,3:length(X[1,])])
}
}
#add either _Avg or _SD depending on if the calculated score is an average or SD
colnames(GO_Term_Averages) <- paste(colnames(GO_Term_Averages),"Avg", sep = "_")
colnames(GO_Term_SD) <- paste(colnames(GO_Term_SD),"SD", sep = "_")
#combine the averages with the SDs to make one big data.frame
X2 <- cbind(GO_Term_Averages,GO_Term_SD)
#test[ , order(names(test))]
X2 <- X2[,order(names(X2))]
X2 <- X2[!is.na(X2$Z_lm_L_Avg),]
#create output file
write.csv(X2,file=paste(output_dir,"/",expName[m],"/Average_GOTerms_All.csv",sep=""),row.names=FALSE)
#remove NAs
X3 <- X2[!is.na(X2$Z_lm_L_Avg),]
#identify redundant GO terms
for(i in 1:length(X3[,1])){
#loop through each GO term - get term
GO_term_ID <- as.character(X3$GO_ID_Avg[i])
#get term in the X3
X3_Temp <- X3[X3$GO_ID_Avg == GO_term_ID,]
#get anywhere that has the same number K_Avg value
X3_Temp2 <- X3[X3$Z_lm_K_Avg %in% X3_Temp,]
if(length(X3_Temp2[,1]) > 1){
if(length(unique(X3_Temp2$Genes_Avg)) == 1){
X3_Temp2 <- X3_Temp2[1,]
}
}
if(i == 1){
Y <- X3_Temp2
}
if(i > 1){
Y <- rbind(Y,X3_Temp2)
}
}
Y1 <- unique(Y)
write.csv(Y1,file=paste(output_dir,"/",exp_name,"/Average_GOTerms_All_NonRedundantTerms.csv",sep=""),row.names = FALSE)
Y2 <- Y1[Y1$Z_lm_L_Avg >= 2 | Y1$Z_lm_L_Avg <= -2,]
Y2 <- Y2[!is.na(Y2$Z_lm_L_Avg),]
write.csv(Y2,file=paste(output_dir,"/",exp_name,"/Average_GOTerms_NonRedundantTerms_Above2SD_L.csv",sep=""),row.names = FALSE)
Y3 <- Y2[Y2$NumGenes_Avg > 2,]
write.csv(Y3,file=paste(output_dir,"/",exp_name,"/Average_GOTerms_NonRedundantTerms_Above2SD_L_Above2Genes.csv",sep=""),row.names = FALSE)
Y4 <- Y1[Y1$Z_lm_K_Avg >= 2 | Y1$Z_lm_K_Avg <= -2,]
Y4 <- Y4[!is.na(Y4$Z_lm_K_Avg),]
write.csv(Y4,file=paste(output_dir,"/",exp_name,"/Average_GOTerms_NonRedundantTerms_Above2SD_K.csv",sep=""),row.names = FALSE)
Y5 <- Y4[Y4$NumGenes_Avg > 2,]
write.csv(Y5,file=paste(output_dir,"/",exp_name,"/Average_GOTerms_NonRedundantTerms_Above2SD_K_Above2Genes.csv",sep=""),row.names = FALSE)
#End of 'for loop'
}