365 lines
16 KiB
R
365 lines
16 KiB
R
#!/usr/bin/env Rscript
|
|
|
|
library("RColorBrewer")
|
|
library("gplots")
|
|
library("tidyverse")
|
|
|
|
args <- commandArgs(TRUE)
|
|
|
|
# Define the output path for the heatmaps - create this folder first - in linux terminal in the working folder use > mkdir filename_heatmaps
|
|
output_path <- file.path(Args[1])
|
|
|
|
# Need to give the input "finalTable.csv" file after running REMc generated by eclipse
|
|
final_table <- file.path(args[2])
|
|
|
|
# Give the damp_list.txt as the third argument - will color the gene names differently
|
|
damps <- file.path(Args[3])
|
|
damp_list <- read.delim(file = damps, header = FALSE, stringsAsFactors = FALSE)
|
|
|
|
# Give the yeast human homology mapping as the fourth argument - will add the genes to the finalTable and use info for heatmaps
|
|
map_file <- file.path(Args[4])
|
|
mapping <- read.csv(file = map_file, stringsAsFactors = FALSE)
|
|
|
|
# Read in finalTablewithShift
|
|
hmapfile <- data.frame(read.csv(file = final_table, header = TRUE, sep = ",", stringsAsFactors = FALSE))
|
|
|
|
# Map the finalTable to the human homolog file
|
|
hmapfile_map <- hmapfile
|
|
# Match using OrfRep after dropping the _1 _2 _3 _4
|
|
# But need to also account for some older files have ORF as column name rather than OrfRep in finalTable file
|
|
if (colnames(hmapfile_map)[2] == "OrfRep") {
|
|
try(hmapfile_map$ORFMatch <- hmapfile_map$OrfRep)
|
|
}
|
|
if (colnames(hmapfile_map)[2] == "ORF") {
|
|
try(hmapfile_map$ORFMatch <- hmapfile_map$ORF)
|
|
}
|
|
hmapfile_map$ORFMatch <- gsub("_1", "", x = hmapfile_map$ORFMatch)
|
|
hmapfile_map$ORFMatch <- gsub("_2", "", x = hmapfile_map$ORFMatch)
|
|
hmapfile_map$ORFMatch <- gsub("_3", "", x = hmapfile_map$ORFMatch)
|
|
hmapfile_map$ORFMatch <- gsub("_4", "", x = hmapfile_map$ORFMatch)
|
|
|
|
# Join the hmapfile using
|
|
hmapfile_w_homolog <- full_join(hmapfile_map, mapping, by = c("ORFMatch" = "ensembl_gene_id"))
|
|
|
|
# Remove matches that are not from the finalTable
|
|
hmapfile_w_homolog <- hmapfile_w_homolog[is.na(hmapfile_w_homolog$likelihood) == FASLE, ]
|
|
|
|
# Write csv with all info from mapping file
|
|
write.csv(hmapfile_w_homolog, file.path(output_path, paste0(final_table, "_WithHomologAll.csv")), row.names = FALSE)
|
|
|
|
# Remove the non matches and output another mapping file - this is also one used to make heatmaps
|
|
hmapfile_w_homolog <- hmapfile_w_homolog[is.na(hmapfile_w_homolog$external_gene_name_Human) == FALSE, ]
|
|
write.csv(hmapfile_w_homolog, file.path(output_path, paste0(final_table, "_WithHomologMatchesOnly.csv"), row.names = FALSE))
|
|
|
|
# Add human gene name to the Gene column
|
|
hmapfile_w_homolog$Gene <- paste(hmapfile_w_homolog$Gene, hmapfile_w_homolog$external_gene_name_Human, sep = "/")
|
|
|
|
# Only keep the finalTable file columns and the homology info
|
|
hmap_len <- dim(hmapfile)[2]
|
|
|
|
hmapfile_w_homolog_remake <-
|
|
cbind(hmapfile_w_homolog[, 1:hmap_len], hsapiens_homolog_orthology_type = hmapfile_w_homolog$hsapiens_homolog_orthology_type)
|
|
hmapfile <- hmapfile_w_homolog_remake
|
|
|
|
# Set NAs to NA
|
|
hmapfile[hmapfile == -100] <- NA
|
|
hmapfile[hmapfile == 100] <- NA
|
|
hmapfile[hmapfile == 0.001] <- NA
|
|
hmapfile[hmapfile == -0.001] <- NA
|
|
|
|
# Select the number of rows based on the number of genes
|
|
num_total_genes <- length(hmapfile[, 1])
|
|
|
|
# Break out the cluster names so each part of the cluster origin can be accessed
|
|
# Line below removed because it adds to many genes to clusters when going past 1-0-10
|
|
# since it cannot differentiate between 1-0-1 and 1-0-10 when using grepl.
|
|
# hmapfile$cluster.origin = gsub(" ","",x = hmapfile$cluster.origin)
|
|
|
|
hmapfile$cluster.origin <- gsub(";", " ;", x = hmapfile$cluster.origin)
|
|
hmapfile$cluster.origin <- strsplit(hmapfile$cluster.origin, ";")
|
|
# use tail(x,n) for accessing the outward most cluster
|
|
|
|
clust_rounds <- 0
|
|
for (i in 1:num_total_genes) {
|
|
if (length(hmapfile$cluster.origin[[i]]) > clust_rounds) {
|
|
clust_rounds <- length(hmapfile$cluster.origin[[i]])
|
|
}
|
|
}
|
|
|
|
unique_clusts <- unique(hmapfile$cluster.origin[1:num_total_genes])
|
|
unique_clusts <- unique_clusts[unique_clusts != " "]
|
|
|
|
#select only the unique cluster names
|
|
unique_clusts <- sort(unique(unlist(unique_clusts, use.names = FALSE)), decreasing = FALSE)
|
|
num_unique_clusts <- length(unique_clusts)
|
|
|
|
# Base the color key on a statistical analysis of the L and K data
|
|
# need to create "breaks" to set the color key, need to have 12 different breaks (for 11 colors)
|
|
# scale() will calculate the mean and standard deviation of the entire vector
|
|
# then "scale" each element by those values by subtracting the mean and dividing by the sd
|
|
|
|
# hmapfile[,4:(length(hmapfile[1,]) - 2)] <- scale(hmapfile[,4:(length(hmapfile[1,]) - 2)])
|
|
|
|
# Change so that the L data is multiplied to be on the same scale as the K data
|
|
|
|
KEY_MIN <- 0
|
|
KEY_MAX <- 0
|
|
K_MIN <- 0
|
|
L_MAX <- 0
|
|
KcolumnValues <- vector()
|
|
LcolumnValues <- vector()
|
|
|
|
for (i in 4:(length(hmapfile[1, ]) - 3)){
|
|
if (grepl("_Z_lm_K", colnames(hmapfile)[i], fixed = TRUE) == TRUE) {
|
|
KcolumnValues <- append(KcolumnValues, i)
|
|
}
|
|
if (grepl("_Z_lm_L", colnames(hmapfile)[i], fixed = TRUE) == TRUE) {
|
|
LcolumnValues <- append(LcolumnValues, i)
|
|
}
|
|
}
|
|
|
|
# L_MAX <- quantile(hmapfile[,LcolumnValues],c(0,.01,.5,.99,1),na.rm = TRUE)[4]
|
|
# K_MIN <- quantile(hmapfile[,KcolumnValues],c(0,.01,.5,.99,1),na.rm = TRUE)[2]
|
|
# L_MAX <- quantile(hmapfile[,LcolumnValues],c(0,.01,.5,.975,1),na.rm = TRUE)[4]
|
|
# K_MIN <- quantile(hmapfile[,KcolumnValues],c(0,.025,.5,.99,1),na.rm = TRUE)[2]
|
|
|
|
# Z scores are
|
|
L_MAX <- 12
|
|
K_MIN <- -12
|
|
|
|
# L_Multiplier <- as.numeric(abs(K_MIN/L_MAX))
|
|
# hmapfile[,LcolumnValues] <- hmapfile[,LcolumnValues] * L_Multiplier
|
|
|
|
# if(grepl("SHIFT",colnames(hmapfile)[4],fixed = TRUE) == TRUE){
|
|
# print("FOUND SHIFT VALUES")
|
|
# hmapfile[,(LcolumnValues - 1)] <- hmapfile[,(LcolumnValues-1)] * L_Multiplier
|
|
# }
|
|
|
|
#KEY_MAX <- as.numeric(L_MAX * L_Multiplier)
|
|
#KEY_MIN <- as.numeric(K_MIN)
|
|
KEY_MAX <- as.numeric(L_MAX)
|
|
KEY_MIN <- as.numeric(K_MIN)
|
|
|
|
print(KEY_MIN)
|
|
print(L_MAX)
|
|
#print(L_Multiplier)
|
|
|
|
colormapbreaks <- c(KEY_MIN, KEY_MIN * (5 / 6), KEY_MIN * (4 / 6), KEY_MIN * (3 / 6),
|
|
KEY_MIN * (2 / 6), KEY_MIN * (1 / 6), KEY_MAX * (1 / 6), KEY_MAX * (2 / 6),
|
|
KEY_MAX * (3 / 6), KEY_MAX * (4 / 6), KEY_MAX * (5 / 6), KEY_MAX)
|
|
# print(colormapbreaks)
|
|
|
|
# Probably should give a way to detect shift in case that is is not in the first row... (maybe just grepl for the whole column name?)
|
|
# However since also using this to amend the first part.
|
|
# Could possibly identify all the ones that contain the word shift and then create an object containing just those numbers
|
|
# then could just use these values and create spaces only between interaction values
|
|
# possibly could get rid of redundant shift values if we don't want to view these
|
|
# could we pool all the shift data/average it?
|
|
if (grepl("Shift", colnames(hmapfile)[4], fixed = TRUE) == TRUE) {
|
|
even_columns <- seq(from = 2, to = (length(hmapfile[1, ]) - 7), by = 2)
|
|
# ev_repeat = rep("white",length(even_columns))
|
|
# ev_repeat = rep("red",(length(hmapfile[1,]) - 5))
|
|
# middle_col <- (length(hmapfile[1,]) - 5)/2
|
|
# ev_repeat[(middle_col/2)] <- "black"
|
|
# print(ev_repeat)
|
|
}
|
|
|
|
if (grepl("Shift", colnames(hmapfile)[4], fixed = TRUE) == FALSE) {
|
|
even_columns <- seq(from = 2, to = (length(hmapfile[1, ]) - 7), by = 1)
|
|
print("NO SHIFT VALS FOUND")
|
|
}
|
|
|
|
# for this script only (rap tem hu script)
|
|
# even_columns <- c(2,5,7,10,12,15,17)
|
|
|
|
# m <- 0
|
|
colnames_edit <- as.character(colnames(hmapfile)[4:(length(hmapfile[1, ]) - 3)])
|
|
|
|
colnames(damp_list)[1] <- "ORF"
|
|
hmapfile$damps <- "YKO"
|
|
colnames(hmapfile)[2] <- "ORF"
|
|
try(hmapfile[hmapfile$ORF %in% damp_list$ORF, ]$damps <- "YKD")
|
|
# X <- X[order(X$damps,decreasing = TRUE),]
|
|
hmapfile$color2 <- NA
|
|
try(hmapfile[hmapfile$damps == "YKO", ]$color2 <- "black")
|
|
try(hmapfile[hmapfile$damps == "YKD", ]$color2 <- "red")
|
|
|
|
hmapfile$color <- NA
|
|
try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_many2many", ]$color <- "#F8766D")
|
|
try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_one2many", ]$color <- "#00BA38")
|
|
try(hmapfile[hmapfile$hsapiens_homolog_orthology_type == "ortholog_one2one", ]$color <- "#619CFF")
|
|
|
|
# print(colnames_edit)
|
|
for (i in 1:length(colnames_edit)) {
|
|
if (grepl("Shift", colnames_edit[i], fixed = TRUE) == TRUE) {
|
|
colnames_edit[i] <- ""
|
|
colnames_edit[i + 1] <- gsub(pattern = "_Z_lm_", replacement = " ", x = colnames_edit[i + 1])
|
|
try(colnames_edit[i + 1] <- gsub(pattern = "_", replacement = " ", x = colnames_edit[i + 1]))
|
|
|
|
# INT_store <- strsplit(colnames_edit[i+1], "Z_lm")
|
|
# print(length(unlist(INT_store)))
|
|
# if(length(unlist(INT_store)) == 4){
|
|
# colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[3],sep = " ")
|
|
# }
|
|
# if(length(unlist(INT_store)) == 3){
|
|
#
|
|
# colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],sep = " ")
|
|
# }
|
|
# if(length(unlist(INT_store)) == 5){
|
|
# colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[3],unlist(INT_store)[4],sep = " ")
|
|
# }
|
|
# if(length(unlist(INT_store)) == 6){
|
|
# colnames_edit[i+1] <- paste(unlist(INT_store)[1],unlist(INT_store)[2],unlist(INT_store)[6],sep = " ")
|
|
# }
|
|
|
|
}
|
|
}
|
|
|
|
print(colnames_edit)
|
|
# break()
|
|
# colnames_edit[5] <- "TEM HLEG K"
|
|
# colnames_edit[10] <- "TEM HL K"
|
|
# colnames_edit[15] <- "TEM HLEG L"
|
|
# colnames_edit[20] <- "TEM HL L"
|
|
|
|
# Create the heatmaps
|
|
for (i in 1:num_unique_clusts) {
|
|
cluster <- unique_clusts[i]
|
|
cluster_data <- subset(hmapfile, grepl(cluster, cluster.origin))
|
|
cluster_length <- length(cluster_data[, 1])
|
|
if (cluster_length != 1) {
|
|
X0 <- as.matrix(cluster_data[, 4:(length(hmapfile[1, ]) - 6)])
|
|
if (cluster_length >= 2001) {
|
|
mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf"))
|
|
pdf(file = mypath, height = 20, width = 15)
|
|
heatmap.2(
|
|
x = X0,
|
|
Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust,
|
|
dendrogram = "row", cexCol = 0.8, cexRow = 0.1, scale = "none",
|
|
breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1,
|
|
# zlim = c(-132,132),
|
|
xlab = "Type of Media", ylab = "Gene Name",
|
|
# cellnote = round(X0,digits = 0), notecex = 0.1, key = TRUE,
|
|
keysize = 0.7, trace = "none", density.info = c("none"), margins = c(10, 8),
|
|
na.color = "red", col = brewer.pal(11, "PuOr"),
|
|
main = cluster,
|
|
# ColSideColors = ev_repeat,
|
|
labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color
|
|
)
|
|
# abline(v = 0.5467,col = "black")
|
|
dev.off()
|
|
}
|
|
if (cluster_length >= 201 && cluster_length <= 2000) {
|
|
mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf"))
|
|
pdf(file = mypath, height = 15, width = 12)
|
|
heatmap.2(
|
|
x = X0,
|
|
Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust,
|
|
dendrogram = "row", cexCol = 0.8, cexRow = 0.1, scale = "none",
|
|
breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1,
|
|
# zlim = c(-132,132),
|
|
xlab = "Type of Media", ylab = "Gene Name",
|
|
cellnote = round(X0, digits = 0), notecex = 0.1, key = TRUE,
|
|
keysize = 0.7, trace = "none", density.info = c("none"), margins = c(10, 8),
|
|
na.color = "red", col = brewer.pal(11, "PuOr"),
|
|
main = cluster,
|
|
labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color
|
|
)
|
|
# abline(v = 0.5316,col = "black")
|
|
dev.off()
|
|
}
|
|
if (cluster_length >= 150 && cluster_length <= 200) {
|
|
mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf"))
|
|
pdf(file = mypath, height = 12, width = 12)
|
|
heatmap.2(
|
|
x = X0,
|
|
Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust,
|
|
dendrogram = "row", cexCol = 0.8, cexRow = 0.1, scale = "none",
|
|
breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1,
|
|
# zlim = c(-132,132),
|
|
xlab = "Type of Media", ylab = "Gene Name",
|
|
cellnote = round(X0, digits = 0), notecex = 0.2, key = TRUE,
|
|
keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8),
|
|
na.color = "red", col = brewer.pal(11, "PuOr"),
|
|
main = cluster,
|
|
labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color
|
|
)
|
|
dev.off()
|
|
}
|
|
if (cluster_length >= 101 && cluster_length <= 149) {
|
|
mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf"))
|
|
pdf(file = mypath, height = 12, width = 12)
|
|
heatmap.2(
|
|
x = X0,
|
|
Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust,
|
|
dendrogram = "row", cexCol = 0.8, cexRow = 0.2, scale = "none",
|
|
breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1,
|
|
# zlim = c(-132,132),
|
|
xlab = "Type of Media", ylab = "Gene Name",
|
|
cellnote = round(X0, digits = 0), notecex = 0.3, key = TRUE,
|
|
keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8),
|
|
na.color = "red", col = brewer.pal(11, "PuOr"),
|
|
main = cluster,
|
|
labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color
|
|
)
|
|
dev.off()
|
|
}
|
|
if (cluster_length >= 60 && cluster_length <= 100) {
|
|
mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf"))
|
|
pdf(file = mypath, height = 12, width = 12)
|
|
heatmap.2(
|
|
x = X0,
|
|
Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust,
|
|
dendrogram = "row", cexCol = 0.8, cexRow = 0.4, scale = "none",
|
|
breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1,
|
|
# zlim = c(-132,132),
|
|
xlab = "Type of Media", ylab = "Gene Name",
|
|
cellnote = round(X0, digits = 0), notecex = 0.3, key = TRUE,
|
|
keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8),
|
|
na.color = "red", col = brewer.pal(11, "PuOr"),
|
|
main = cluster,
|
|
labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color
|
|
)
|
|
dev.off()
|
|
}
|
|
if (cluster_length <= 59 && cluster_length >= 30) {
|
|
mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf"))
|
|
pdf(file = mypath, height = 9, width = 12)
|
|
heatmap.2(
|
|
x = X0,
|
|
Rowv = TRUE, Colv = NA, distfun = dist, hclustfun = hclust,
|
|
dendrogram = "row", cexCol = 0.8, cexRow = 0.6, scale = "none",
|
|
breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1,
|
|
# zlim = c(-132,132),
|
|
xlab = "Type of Media", ylab = "Gene Name",
|
|
cellnote = round(X0, digits = 0), notecex = 0.4, key = TRUE,
|
|
keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8),
|
|
na.color = "red", col = brewer.pal(11, "PuOr"),
|
|
main = cluster,
|
|
labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color
|
|
)
|
|
dev.off()
|
|
}
|
|
if (cluster_length <= 29) {
|
|
mypath <- file.path(output_path, paste0("cluster_", gsub(" ", "", cluster), ".pdf"))
|
|
pdf(file = mypath, height = 7, width = 12)
|
|
heatmap.2(
|
|
x = X0,
|
|
Rowv = TRUE, Colv = NA,
|
|
distfun = dist, hclustfun = hclust,
|
|
dendrogram = "row", cexCol = 0.8, cexRow = 0.9, scale = "none",
|
|
breaks = colormapbreaks, symbreaks = FALSE, colsep = even_columns, sepcolor = "white", offsetCol = 0.1,
|
|
# zlim = c(-132,132),
|
|
xlab = "Type of Media", ylab = "Gene Name",
|
|
cellnote = round(X0, digits = 0), notecex = 0.4, key = TRUE,
|
|
keysize = 1, trace = "none", density.info = c("none"), margins = c(10, 8),
|
|
na.color = "red", col = brewer.pal(11, "PuOr"),
|
|
main = cluster,
|
|
labRow = as.character(cluster_data$Gene), labCol = colnames_edit, colRow = cluster_data$color2, RowSideColors = cluster_data$color
|
|
)
|
|
dev.off()
|
|
}
|
|
}
|
|
# print(paste("FINISHED", "CLUSTER",cluster,sep = " "))
|
|
}
|