Files
hartman-server/workflow/apps/r/joinInteractExps.R

239 lines
7.6 KiB
R

#!/usr/bin/env Rscript
# JoinInteractExps.R
library("plyr")
library("sos")
library("dplyr")
args <- commandArgs(TRUE)
# Set output dir
if (length(args) >= 1) {
out_dir <- file.path(args[1])
} else {
out_dir <- "./" # for legacy workflow
}
# Set sd value
if (length(args) >= 2) {
sd <- as.numeric(args[2])
} else {
sd <- 2 # default value
}
sprintf("SD value is: %d", sd)
# Set study_info file
if (length(args) >= 3) {
study_info <- file.path(args[3])
} else {
study_info <- "../Code/StudyInfo.csv" # for legacy workflow
}
studies <- args[4:length(args)]
print(studies)
input_files <- c()
for (i in seq_along(studies)) {
study <- studies[i]
zs_file <- file.path(study, "zscores", "zscores_interaction.csv")
if (file.exists(zs_file)) {
input_files[i] <- zs_file
}
}
rm(zs_file, study)
for (var in ls()) {
print(paste(var, ":", get(var)))
}
print(input_files)
print(length(input_files))
# TODO this is better handled in a loop in case you want to compare more experiments?
# The input is already designed for this
# Read in the files for your experiment and
# Join the two files at a time as a function of how many inputFile
# list the larger file first ? in this example X2 has the larger number of genes
# If X1 has a larger number of genes, switch the order of X1 and X2
if (length(input_files) < 2) {
print("Note enough Exps to compare, skipping join")
stop("Exiting script")
}
if (length(input_files) >= 2) {
X1 <- read.csv(file = input_files[1], stringsAsFactors = FALSE)
X2 <- read.csv(file = input_files[2], stringsAsFactors = FALSE)
X <- join(X1, X2, by = "OrfRep")
OBH <- X[, order(colnames(X))] # OrderByHeader
headers <- select(OBH, contains("OrfRep"), matches("Gene"),
contains("z_lm_k"), contains("z_shift_k"), contains("z_lm_l"), contains("z_shift_l"))
headSel <- select(headers, -"Gene.1") # remove "Gene.1 column
headSel2 <- select(OBH, contains("OrfRep"), matches("Gene")) # frame for interleaving Z_lm with Shift colums
headSel2 <- select(headSel2, -"Gene.1") # remove "Gene.1 column # frame for interleaving Z_lm with Shift colums
}
if (length(input_files) >= 3) {
X3 <- read.csv(file = input_files[3], stringsAsFactors = FALSE)
X <- join(X, X3, by = "OrfRep")
headSel <- select(headers, -"Gene.1", -"Gene.2")
headSel2 <- select(OBH, contains("OrfRep"), matches("Gene"))
headSel2 <- select(headSel2, -"Gene.1", -"Gene.2")
}
if (length(input_files) >= 4) {
X4 <- read.csv(file = input_files[4], stringsAsFactors = FALSE)
X <- join(X, X4, by = "OrfRep")
headSel <- select(headers, -"Gene.1", -"Gene.2", -"Gene.3")
headSel2 <- select(OBH, contains("OrfRep"), matches("Gene"))
headSel2 <- select(headSel2, -"Gene.1", -"Gene.2", -"Gene.3")
}
print(headers)
# headSel$contains("Z_Shift") %>% replace_na(0.001)
headers <- colnames(headSel)
print(headers)
i <- 0
for (i in 1:length(headers)) {
if (grepl("Shift", headers[i])) {
headSel[headers[i]][is.na(headSel[headers[i]])] <- 0.001
}
if (grepl("Z_lm_", headers[i])) {
headSel[headers[i]][is.na(headSel[headers[i]])] <- 0.0001
}
}
# 2SD option code to exclude Z_lm values less than 2 standard Deviations
REMcRdy <- select(headSel, contains("OrfRep"), matches("Gene"), contains("z_lm_"))
shiftOnly <- select(headSel, contains("OrfRep"), matches("Gene"), contains("z_shift"))
# Code to replace the numeric (.1 .2 .3) headers with experiment names from StudyInfo.txt
Labels <- read.csv(file = study_info, stringsAsFactors = FALSE, sep = ",")
# Using Text search grepl to relabel headers
REMcRdyHdr <- colnames(REMcRdy)
REMcRdyLabels <- "asdf"
shftHdr <- colnames(shiftOnly)
shiftLabels <- "asdf"
shiftLabels[1:2] <- shftHdr[1:2]
REMcRdyLabels[1:2] <- REMcRdyHdr[1:2]
for (i in 3:(length(shftHdr))) {
if (i == 3) {
shiftLabels[3] <- paste0(Labels[1, 2], ".", shftHdr[3])
REMcRdyLabels[3] <- paste0(Labels[1, 2], ".", REMcRdyHdr[3])
}
if (i == 5) {
shiftLabels[5] <- paste0(Labels[1, 2], ".", shftHdr[5])
REMcRdyLabels[5] <- paste0(Labels[1, 2], ".", REMcRdyHdr[5])
}
if (i == 7) {
shiftLabels[7] <- paste0(Labels[1, 2], ".", shftHdr[7])
REMcRdyLabels[7] <- paste0(Labels[1, 2], ".", REMcRdyHdr[7])
}
if (grepl(".1", shftHdr[i], fixed = true)) {
shiftLabels[i] <- paste0(Labels[2, 2], ".", shftHdr[i])
REMcRdyLabels[i] <- paste0(Labels[2, 2], ".", REMcRdyHdr[i])
}
if (grepl(".2", shftHdr[i], fixed = true)) {
shiftLabels[i] < -paste0(Labels[3, 2], ".", shftHdr[i])
REMcRdyLabels[i] <- paste0(Labels[3, 2], ".", REMcRdyHdr[i])
}
if (grepl(".3", shftHdr[i], fixed = true)) {
shiftLabels[i] <- paste0(Labels[4, 2], ".", shftHdr[i])
REMcRdyLabels[i] <- paste0(Labels[4, 2], ".", REMcRdyHdr[i])
}
}
for (i in 3:(length(REMcRdyLabels))) {
j <- as.integer(i)
REMcRdyLabels[j] <- gsub("[.]", "_", REMcRdyLabels[j])
shiftLabels[j] <- gsub("[.]", "_", shiftLabels[j])
}
colnames(shiftOnly) <- shiftLabels
colnames(REMcRdy) <- REMcRdyLabels
combI <- headSel2 # starting Template orf, Genename columns
# headersRemc<-colnames(REMcRdy)
# Reorder columns to produce an interleaved set of Z_lm and Shift data for all the cpps.
for (i in 3:length(colnames(REMcRdy))) {
combI <- cbind.data.frame(combI, shiftOnly[i])
combI <- cbind.data.frame(combI, REMcRdy[i])
}
Vec1 <- NA
Vec2 <- NA
Vec3 <- NA
Vec4 <- NA
Vec5 <- NA
Vec6 <- NA
Vec7 <- NA
Vec8 <- NA
if (length(REMcRdy) == 6) {
Vec1 <- abs(REMcRdy[, 3]) >= sd
Vec2 <- abs(REMcRdy[, 4]) >= sd
Vec3 <- abs(REMcRdy[, 5]) >= sd
Vec4 <- abs(REMcRdy[, 6]) >= sd
bolVec <- Vec1 | Vec2 | Vec3 | Vec4
REMcRdyGT2 <- REMcRdy[bolVec, 1:2]
REMcRdyGT2[, 3:6] <- REMcRdy[bolVec, 3:6]
shiftOnlyGT2 <- shiftOnly[bolVec, 1:2]
shiftOnlyGT2[, 3:6] <- shiftOnly[bolVec, 3:6]
}
if (length(REMcRdy) == 8) {
Vec1 <- abs(REMcRdy[, 3]) >= sd
Vec2 <- abs(REMcRdy[, 4]) >= sd
Vec3 <- abs(REMcRdy[, 5]) >= sd
Vec4 <- abs(REMcRdy[, 6]) >= sd
Vec5 <- abs(REMcRdy[, 7]) >= sd
Vec6 <- abs(REMcRdy[, 8]) >= sd
bolVec <- Vec1 | Vec2 | Vec3 | Vec4 | Vec5 | Vec6
REMcRdyGT2 <- REMcRdy[bolVec, 1:2]
REMcRdyGT2[, 3:8] <- REMcRdy[bolVec, 3:8]
shiftOnlyGT2 <- shiftOnly[bolVec, 1:2]
shiftOnlyGT2[, 3:8] <- shiftOnly[bolVec, 3:8]
}
if (length(REMcRdy) == 10) {
Vec1 <- abs(REMcRdy[, 3]) >= sd
Vec2 <- abs(REMcRdy[, 4]) >= sd
Vec3 <- abs(REMcRdy[, 5]) >= sd
Vec4 <- abs(REMcRdy[, 6]) >= sd
Vec5 <- abs(REMcRdy[, 7]) >= sd
Vec6 <- abs(REMcRdy[, 8]) >= sd
Vec7 <- abs(REMcRdy[, 9]) >= sd
Vec8 <- abs(REMcRdy[, 10]) >= sd
bolVec <- Vec1 | Vec2 | Vec3 | Vec4 | Vec5 | Vec6 | Vec7 | Vec8
REMcRdyGT2 <- REMcRdy[bolVec, 1:2]
REMcRdyGT2[, 3:10] <- REMcRdy[bolVec, 3:10]
shiftOnlyGT2 <- shiftOnly[bolVec, 1:2]
shiftOnlyGT2[, 3:10] <- shiftOnly[bolVec, 3:10]
}
if (sd != 0) {
REMcRdy <- REMcRdyGT2 # [,2:length(REMcRdyGT2)]
shiftOnly <- shiftOnlyGT2 # [,2:length(shiftOnlyGT2)]
}
if (sd == 0) {
REMcRdy <- REMcRdy # [,2:length(REMcRdy)]
shiftOnly <- shiftOnly # [,2:length(shiftOnly)]
}
# R places hidden "" around the header names. The following
# is intended to remove those quote so that the "" do not blow up the Java REMc.
# Use ,quote=F in the write.csv statement to fix R output file.
# write.csv(combI,file.path(out_dir,"CombinedKLzscores.csv"), row.names = FALSE)
write.csv(REMcRdy, file.path(out_dir, "REMcRdy_lm_only.csv"), row.names = FALSE, quote = FALSE)
write.csv(shiftOnly, file.path(out_dir, "Shift_only.csv"), row.names = FALSE, quote = FALSE)
#LabelStd <- read.table(file="./parameters.csv",stringsAsFactors = FALSE,sep = ",")
LabelStd <- read.csv(file = study_info, stringsAsFactors = FALSE)
print(sd)
LabelStd[, 4] <- as.numeric(sd)
write.csv(LabelStd, file = file.path(out_dir, "parameters.csv"), row.names = FALSE)
write.csv(LabelStd, file = study_info, row.names = FALSE)