calculate_interaction_zscores.R 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237
  1. suppressMessages({
  2. library(ggplot2)
  3. library(plotly)
  4. library(htmlwidgets)
  5. library(dplyr)
  6. library(ggthemes)
  7. library(data.table)
  8. library(unix)
  9. })
  10. options(warn = 2)
  11. options(width = 10000)
  12. # Set the memory limit to 30GB (30 * 1024 * 1024 * 1024 bytes)
  13. soft_limit <- 30 * 1024 * 1024 * 1024
  14. hard_limit <- 30 * 1024 * 1024 * 1024
  15. rlimit_as(soft_limit, hard_limit)
  16. # Constants for configuration
  17. plot_width <- 14
  18. plot_height <- 9
  19. base_size <- 14
  20. parse_arguments <- function() {
  21. args <- if (interactive()) {
  22. c(
  23. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240116_jhartman2_DoxoHLD",
  24. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/apps/r/SGD_features.tab",
  25. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/easy/20240116_jhartman2_DoxoHLD/results_std.txt",
  26. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp1",
  27. "Experiment 1: Doxo versus HLD",
  28. 3,
  29. "/home/bryan/documents/develop/hartmanlab/qhtcp-workflow/out/20240116_jhartman2_DoxoHLD/20240822_jhartman2_DoxoHLD/exp2",
  30. "Experiment 2: HLD versus Doxo",
  31. 3
  32. )
  33. } else {
  34. commandArgs(trailingOnly = TRUE)
  35. }
  36. # Extract paths, names, and standard deviations
  37. paths <- args[seq(4, length(args), by = 3)]
  38. names <- args[seq(5, length(args), by = 3)]
  39. sds <- as.numeric(args[seq(6, length(args), by = 3)])
  40. # Normalize paths
  41. normalized_paths <- normalizePath(paths, mustWork = FALSE)
  42. # Create named list of experiments
  43. experiments <- list()
  44. for (i in seq_along(paths)) {
  45. experiments[[names[i]]] <- list(
  46. path = normalized_paths[i],
  47. sd = sds[i]
  48. )
  49. }
  50. list(
  51. out_dir = normalizePath(args[1], mustWork = FALSE),
  52. sgd_gene_list = normalizePath(args[2], mustWork = FALSE),
  53. easy_results_file = normalizePath(args[3], mustWork = FALSE),
  54. experiments = experiments
  55. )
  56. }
  57. args <- parse_arguments()
  58. # Should we keep output in exp dirs or combine in the study output dir?
  59. # dir.create(file.path(args$out_dir, "zscores"), showWarnings = FALSE)
  60. # dir.create(file.path(args$out_dir, "zscores", "qc"), showWarnings = FALSE)
  61. # Define themes and scales
  62. theme_publication <- function(base_size = 14, base_family = "sans", legend_position = "bottom") {
  63. theme_foundation <- ggplot2::theme_grey(base_size = base_size, base_family = base_family)
  64. theme_foundation %+replace%
  65. theme(
  66. plot.title = element_text(face = "bold", size = rel(1.2), hjust = 0.5),
  67. text = element_text(),
  68. panel.background = element_rect(colour = NA),
  69. plot.background = element_rect(colour = NA),
  70. panel.border = element_rect(colour = NA),
  71. axis.title = element_text(face = "bold", size = rel(1)),
  72. axis.title.y = element_text(angle = 90, vjust = 2),
  73. axis.title.x = element_text(vjust = -0.2),
  74. axis.line = element_line(colour = "black"),
  75. panel.grid.major = element_line(colour = "#f0f0f0"),
  76. panel.grid.minor = element_blank(),
  77. legend.key = element_rect(colour = NA),
  78. legend.position = legend_position,
  79. legend.direction = ifelse(legend_position == "right", "vertical", "horizontal"),
  80. plot.margin = unit(c(10, 5, 5, 5), "mm"),
  81. strip.background = element_rect(colour = "#f0f0f0", fill = "#f0f0f0"),
  82. strip.text = element_text(face = "bold")
  83. )
  84. }
  85. scale_fill_publication <- function(...) {
  86. discrete_scale("fill", "Publication", manual_pal(values = c(
  87. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  88. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  89. )), ...)
  90. }
  91. scale_colour_publication <- function(...) {
  92. discrete_scale("colour", "Publication", manual_pal(values = c(
  93. "#386cb0", "#fdb462", "#7fc97f", "#ef3b2c", "#662506",
  94. "#a6cee3", "#fb9a99", "#984ea3", "#ffff33"
  95. )), ...)
  96. }
  97. # Load the initial dataframe from the easy_results_file
  98. load_and_process_data <- function(easy_results_file, sd = 3) {
  99. df <- read.delim(easy_results_file, skip = 2, as.is = TRUE, row.names = 1, strip.white = TRUE)
  100. df <- df %>%
  101. filter(!(.[[1]] %in% c("", "Scan"))) %>%
  102. filter(!is.na(ORF) & ORF != "" & !Gene %in% c("BLANK", "Blank", "blank") & Drug != "BMH21") %>%
  103. # Rename columns
  104. rename(L = l, num = Num., AUC = AUC96, scan = Scan, last_bg = LstBackgrd, first_bg = X1stBackgrd) %>%
  105. mutate(
  106. across(c(Col, Row, num, L, K, r, scan, AUC, last_bg, first_bg), as.numeric),
  107. delta_bg = last_bg - first_bg,
  108. delta_bg_tolerance = mean(delta_bg, na.rm = TRUE) + (sd * sd(delta_bg, na.rm = TRUE)),
  109. NG = if_else(L == 0 & !is.na(L), 1, 0),
  110. DB = if_else(delta_bg >= delta_bg_tolerance, 1, 0),
  111. SM = 0,
  112. OrfRep = if_else(ORF == "YDL227C", "YDL227C", OrfRep), # should these be hardcoded?
  113. conc_num = as.numeric(gsub("[^0-9\\.]", "", Conc)),
  114. conc_num_factor = as.numeric(as.factor(conc_num)) - 1
  115. )
  116. return(df)
  117. }
  118. # Update Gene names using the SGD gene list
  119. update_gene_names <- function(df, sgd_gene_list) {
  120. # Load SGD gene list
  121. genes <- read.delim(file = sgd_gene_list,
  122. quote = "", header = FALSE,
  123. colClasses = c(rep("NULL", 3), rep("character", 2), rep("NULL", 11)))
  124. # Create a named vector for mapping ORF to GeneName
  125. gene_map <- setNames(genes$V5, genes$V4)
  126. # Vectorized match to find the GeneName from gene_map
  127. mapped_genes <- gene_map[df$ORF]
  128. # Replace NAs in mapped_genes with original Gene names (preserves existing Gene names if ORF is not found)
  129. updated_genes <- ifelse(is.na(mapped_genes) | df$OrfRep == "YDL227C", df$Gene, mapped_genes)
  130. # Ensure Gene is not left blank or incorrectly updated to "OCT1"
  131. df <- df %>%
  132. mutate(Gene = ifelse(updated_genes == "" | updated_genes == "OCT1", OrfRep, updated_genes))
  133. return(df)
  134. }
  135. # Calculate summary statistics for all variables
  136. calculate_summary_stats <- function(df, variables, group_vars = c("OrfRep", "conc_num", "conc_num_factor")) {
  137. # Summarize the variables within the grouped data
  138. summary_stats <- df %>%
  139. group_by(across(all_of(group_vars))) %>%
  140. summarise(
  141. N = sum(!is.na(L)),
  142. across(all_of(variables), list(
  143. mean = ~mean(., na.rm = TRUE),
  144. median = ~median(., na.rm = TRUE),
  145. max = ~ ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  146. min = ~ ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  147. sd = ~sd(., na.rm = TRUE),
  148. se = ~ ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
  149. ), .names = "{.fn}_{.col}")
  150. )
  151. # print(summary_stats)
  152. # Prevent .x and .y suffix issues by renaming columns
  153. df_cleaned <- df %>%
  154. select(-any_of(setdiff(names(summary_stats), group_vars))) # Avoid duplicate columns in the final join
  155. # Join the stats back to the original dataframe
  156. df_with_stats <- left_join(df_cleaned, summary_stats, by = group_vars)
  157. return(list(summary_stats = summary_stats, df_with_stats = df_with_stats))
  158. }
  159. calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c("OrfRep", "Gene", "num")) {
  160. # Calculate total concentration variables
  161. total_conc_num <- length(unique(df$conc_num))
  162. num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
  163. # Pull the background means and standard deviations from zero concentration
  164. bg_means <- list(
  165. L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
  166. K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
  167. r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
  168. AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
  169. )
  170. bg_sd <- list(
  171. L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
  172. K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
  173. r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
  174. AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
  175. )
  176. stats <- df %>%
  177. mutate(
  178. WT_L = mean_L,
  179. WT_K = mean_K,
  180. WT_r = mean_r,
  181. WT_AUC = mean_AUC,
  182. WT_sd_L = sd_L,
  183. WT_sd_K = sd_K,
  184. WT_sd_r = sd_r,
  185. WT_sd_AUC = sd_AUC
  186. ) %>%
  187. group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
  188. mutate(
  189. N = sum(!is.na(L)),
  190. NG = sum(NG, na.rm = TRUE),
  191. DB = sum(DB, na.rm = TRUE),
  192. SM = sum(SM, na.rm = TRUE),
  193. across(all_of(variables), list(
  194. mean = ~mean(., na.rm = TRUE),
  195. median = ~median(., na.rm = TRUE),
  196. max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
  197. min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
  198. sd = ~sd(., na.rm = TRUE),
  199. se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
  200. ), .names = "{.fn}_{.col}")
  201. ) %>%
  202. ungroup()
  203. stats <- stats %>%
  204. group_by(across(all_of(group_vars))) %>%
  205. mutate(
  206. Raw_Shift_L = mean_L[[1]] - bg_means$L,
  207. Raw_Shift_K = mean_K[[1]] - bg_means$K,
  208. Raw_Shift_r = mean_r[[1]] - bg_means$r,
  209. Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
  210. Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
  211. Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
  212. Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
  213. Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
  214. )
  215. stats <- stats %>%
  216. mutate(
  217. Exp_L = WT_L + Raw_Shift_L,
  218. Exp_K = WT_K + Raw_Shift_K,
  219. Exp_r = WT_r + Raw_Shift_r,
  220. Exp_AUC = WT_AUC + Raw_Shift_AUC,
  221. Delta_L = mean_L - Exp_L,
  222. Delta_K = mean_K - Exp_K,
  223. Delta_r = mean_r - Exp_r,
  224. Delta_AUC = mean_AUC - Exp_AUC
  225. )
  226. stats <- stats %>%
  227. mutate(
  228. Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
  229. Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
  230. Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
  231. Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
  232. Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L)
  233. )
  234. stats <- stats %>%
  235. mutate(
  236. Zscore_L = Delta_L / WT_sd_L,
  237. Zscore_K = Delta_K / WT_sd_K,
  238. Zscore_r = Delta_r / WT_sd_r,
  239. Zscore_AUC = Delta_AUC / WT_sd_AUC
  240. )
  241. # Create linear models with error handling for missing/insufficient data
  242. # This part is a PITA so best to contain it in its own function
  243. calculate_lm_values <- function(y, x) {
  244. if (length(unique(x)) > 1 && sum(!is.na(y)) > 1) {
  245. # Suppress warnings only for perfect fits or similar issues
  246. model <- suppressWarnings(lm(y ~ x))
  247. coefficients <- coef(model)
  248. r_squared <- tryCatch({
  249. summary(model)$r.squared
  250. }, warning = function(w) {
  251. NA # Set r-squared to NA if there's a warning
  252. })
  253. return(list(intercept = coefficients[1], slope = coefficients[2], r_squared = r_squared))
  254. } else {
  255. return(list(intercept = NA, slope = NA, r_squared = NA))
  256. }
  257. }
  258. lms <- stats %>%
  259. group_by(across(all_of(group_vars))) %>%
  260. reframe(
  261. lm_L = list(calculate_lm_values(Delta_L, conc_num_factor)),
  262. lm_K = list(calculate_lm_values(Delta_K, conc_num_factor)),
  263. lm_r = list(calculate_lm_values(Delta_r, conc_num_factor)),
  264. lm_AUC = list(calculate_lm_values(Delta_AUC, conc_num_factor))
  265. )
  266. lms <- lms %>%
  267. mutate(
  268. lm_L_intercept = sapply(lm_L, `[[`, "intercept"),
  269. lm_L_slope = sapply(lm_L, `[[`, "slope"),
  270. lm_L_r_squared = sapply(lm_L, `[[`, "r_squared"),
  271. lm_K_intercept = sapply(lm_K, `[[`, "intercept"),
  272. lm_K_slope = sapply(lm_K, `[[`, "slope"),
  273. lm_K_r_squared = sapply(lm_K, `[[`, "r_squared"),
  274. lm_r_intercept = sapply(lm_r, `[[`, "intercept"),
  275. lm_r_slope = sapply(lm_r, `[[`, "slope"),
  276. lm_r_r_squared = sapply(lm_r, `[[`, "r_squared"),
  277. lm_AUC_intercept = sapply(lm_AUC, `[[`, "intercept"),
  278. lm_AUC_slope = sapply(lm_AUC, `[[`, "slope"),
  279. lm_AUC_r_squared = sapply(lm_AUC, `[[`, "r_squared")
  280. ) %>%
  281. select(-lm_L, -lm_K, -lm_r, -lm_AUC)
  282. stats <- stats %>%
  283. left_join(lms, by = group_vars) %>%
  284. mutate(
  285. lm_Score_L = lm_L_slope * max_conc + lm_L_intercept,
  286. lm_Score_K = lm_K_slope * max_conc + lm_K_intercept,
  287. lm_Score_r = lm_r_slope * max_conc + lm_r_intercept,
  288. lm_Score_AUC = lm_AUC_slope * max_conc + lm_AUC_intercept,
  289. R_Squared_L = lm_L_r_squared,
  290. R_Squared_K = lm_K_r_squared,
  291. R_Squared_r = lm_r_r_squared,
  292. R_Squared_AUC = lm_AUC_r_squared,
  293. Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
  294. Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
  295. Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
  296. Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
  297. )
  298. stats <- stats %>%
  299. mutate(
  300. Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
  301. Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
  302. Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
  303. Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
  304. Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
  305. Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
  306. Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
  307. Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
  308. )
  309. # Declare column order for output
  310. calculations <- stats %>%
  311. select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
  312. "mean_L", "mean_K", "mean_r", "mean_AUC",
  313. "median_L", "median_K", "median_r", "median_AUC",
  314. "sd_L", "sd_K", "sd_r", "sd_AUC",
  315. "se_L", "se_K", "se_r", "se_AUC",
  316. "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
  317. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  318. "WT_L", "WT_K", "WT_r", "WT_AUC",
  319. "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
  320. "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
  321. "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
  322. "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
  323. "NG", "SM", "DB") %>%
  324. ungroup()
  325. interactions <- stats %>%
  326. select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
  327. "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
  328. "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
  329. "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
  330. "Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
  331. "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
  332. "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
  333. "NG", "SM", "DB") %>%
  334. arrange(desc(lm_Score_L)) %>%
  335. arrange(desc(NG)) %>%
  336. ungroup()
  337. df <- df %>% select(-any_of(setdiff(names(calculations), group_vars)))
  338. df <- left_join(df, calculations, by = group_vars)
  339. df <- df %>% select(-any_of(setdiff(names(interactions), group_vars)))
  340. df <- left_join(df, interactions, by = group_vars)
  341. return(list(calculations = calculations, interactions = interactions, joined = df))
  342. }
  343. generate_and_save_plots <- function(output_dir, file_name, plot_configs, grid_layout = NULL) {
  344. message("Generating html and pdf plots for: ", file_name)
  345. plots <- lapply(plot_configs, function(config) {
  346. df <- config$df
  347. # print(df %>% select(any_of(c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  348. # "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB"))), n = 5)
  349. # Plots are testy about missing aesthetics, so handle them here
  350. aes_mapping <-
  351. if (is.null(config$color_var)) {
  352. if (is.null(config$y_var)) {
  353. aes(x = !!sym(config$x_var))
  354. } else {
  355. aes(x = !!sym(config$x_var), y = !!sym(config$y_var))
  356. }
  357. } else {
  358. if (is.null(config$y_var)) {
  359. aes(x = !!sym(config$x_var), color = as.factor(!!sym(config$color_var)))
  360. } else {
  361. aes(x = !!sym(config$x_var), y = !!sym(config$y_var), color = as.factor(!!sym(config$color_var)))
  362. }
  363. }
  364. # Start building the plot
  365. plot <- ggplot(df, aes_mapping)
  366. # Use appropriate helper function based on plot type
  367. plot <- switch(config$plot_type,
  368. "scatter" = generate_scatter_plot(plot, config),
  369. "rank" = generate_rank_plot(plot, config),
  370. "correlation" = generate_correlation_plot(plot, config),
  371. "box" = generate_box_plot(plot, config),
  372. "density" = plot + geom_density(),
  373. "bar" = plot + geom_bar(),
  374. plot # default case if no type matches
  375. )
  376. return(plot)
  377. })
  378. # PDF saving logic
  379. pdf(file.path(output_dir, paste0(file_name, ".pdf")), width = 14, height = 9)
  380. lapply(plots, print)
  381. dev.off()
  382. # HTML saving logic
  383. plotly_plots <- lapply(plots, function(plot) {
  384. config <- plot$config
  385. if (!is.null(config$legend_position) && config$legend_position == "bottom") {
  386. suppressWarnings(ggplotly(plot, tooltip = "text") %>% layout(legend = list(orientation = "h")))
  387. } else {
  388. ggplotly(plot, tooltip = "text")
  389. }
  390. })
  391. combined_plot <- subplot(plotly_plots, nrows = grid_layout$nrow %||% length(plots), margin = 0.05)
  392. saveWidget(combined_plot, file = file.path(output_dir, paste0(file_name, ".html")), selfcontained = TRUE)
  393. }
  394. generate_scatter_plot <- function(plot, config, interactive = FALSE) {
  395. # Add the interactive `text` aesthetic if `interactive` is TRUE
  396. if (interactive) {
  397. plot <- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
  398. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene, "delta_bg:", delta_bg)),
  399. shape = config$shape %||% 3, size = config$size %||% 0.2)
  400. } else if (!is.null(config$gene_point) && config$gene_point) {
  401. plot + geom_point(aes(text = paste("ORF:", OrfRep, "Gene:", Gene)),
  402. shape = config$shape %||% 3, size = config$size %||% 0.2, position = "jitter")
  403. } else {
  404. plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2)
  405. }
  406. } else {
  407. # For non-interactive plots, just add `geom_point`
  408. plot <- plot + geom_point(shape = config$shape %||% 3, size = config$size %||% 0.2,
  409. position = if (!is.null(config$position) && config$position == "jitter") "jitter" else "identity")
  410. }
  411. # Add smooth line if specified
  412. if (!is.null(config$add_smooth) && config$add_smooth) {
  413. plot <- if (!is.null(config$lm_line)) {
  414. plot + geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope)
  415. } else {
  416. plot + geom_smooth(method = "lm", se = FALSE)
  417. }
  418. }
  419. # Add error bars if specified
  420. if (!is.null(config$error_bar) && config$error_bar) {
  421. y_mean_col <- paste0("mean_", config$y_var)
  422. y_sd_col <- paste0("sd_", config$y_var)
  423. plot <- plot + geom_errorbar(aes(
  424. ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
  425. ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
  426. ), alpha = 0.3)
  427. }
  428. # Add x-axis customization if specified
  429. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  430. plot <- plot + scale_x_continuous(
  431. name = config$x_label,
  432. breaks = config$x_breaks,
  433. labels = config$x_labels)
  434. }
  435. # Add y-axis limits if specified
  436. if (!is.null(config$ylim_vals)) {
  437. plot <- plot + scale_y_continuous(limits = config$ylim_vals)
  438. }
  439. # Add Cartesian coordinates customization if specified
  440. if (!is.null(config$coord_cartesian)) {
  441. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  442. }
  443. return(plot)
  444. }
  445. generate_rank_plot <- function(plot, config) {
  446. plot <- plot + geom_point(size = config$size %||% 0.1, shape = config$shape %||% 3)
  447. if (!is.null(config$sd_band)) {
  448. for (i in seq_len(config$sd_band)) {
  449. plot <- plot +
  450. annotate("rect", xmin = -Inf, xmax = Inf, ymin = i, ymax = Inf, fill = "#542788", alpha = 0.3) +
  451. annotate("rect", xmin = -Inf, xmax = Inf, ymin = -i, ymax = -Inf, fill = "orange", alpha = 0.3) +
  452. geom_hline(yintercept = c(-i, i), color = "gray")
  453. }
  454. }
  455. if (!is.null(config$enhancer_label)) {
  456. plot <- plot + annotate("text", x = config$enhancer_label$x, y = config$enhancer_label$y, label = config$enhancer_label$label)
  457. }
  458. if (!is.null(config$suppressor_label)) {
  459. plot <- plot + annotate("text", x = config$suppressor_label$x, y = config$suppressor_label$y, label = config$suppressor_label$label)
  460. }
  461. return(plot)
  462. }
  463. generate_correlation_plot <- function(plot, config) {
  464. plot <- plot + geom_point(shape = config$shape %||% 3, color = "gray70") +
  465. geom_abline(intercept = config$lm_line$intercept, slope = config$lm_line$slope, color = "tomato3") +
  466. annotate("text", x = config$annotate_position$x, y = config$annotate_position$y, label = config$correlation_text)
  467. if (!is.null(config$rect)) {
  468. plot <- plot + geom_rect(aes(xmin = config$rect$xmin, xmax = config$rect$xmax, ymin = config$rect$ymin, ymax = config$rect$ymax),
  469. color = "grey20", size = 0.25, alpha = 0.1, fill = NA, inherit.aes = FALSE)
  470. }
  471. return(plot)
  472. }
  473. generate_box_plot <- function(plot, config) {
  474. plot <- plot + geom_boxplot()
  475. if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
  476. plot <- plot + scale_x_discrete(
  477. name = config$x_label,
  478. breaks = config$x_breaks,
  479. labels = config$x_labels
  480. )
  481. }
  482. if (!is.null(config$coord_cartesian)) {
  483. plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
  484. }
  485. return(plot)
  486. }
  487. generate_interaction_plot_configs <- function(df, variables) {
  488. configs <- list()
  489. # Define common y-limits and other attributes for each variable dynamically
  490. limits_map <- list(L = c(-65, 65), K = c(-65, 65), r = c(-0.65, 0.65), AUC = c(-6500, 6500))
  491. # Define annotation positions based on the variable being plotted
  492. annotation_positions <- list(
  493. L = list(Z_Shift_L = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  494. K = list(Z_Shift_K = 45, lm_ZScore = 25, NG = -25, DB = -35, SM = -45),
  495. r = list(Z_Shift_r = 0.45, lm_ZScore = 0.25, NG = -0.25, DB = -0.35, SM = -0.45),
  496. AUC = list(Z_Shift_AUC = 4500, lm_ZScore = 2500, NG = -2500, DB = -3500, SM = -4500)
  497. )
  498. # Define which annotations to include for each plot
  499. annotation_labels <- list(
  500. ZShift = function(df, var) {
  501. val <- df[[paste0("Z_Shift_", var)]]
  502. if (is.numeric(val)) {
  503. paste("ZShift =", round(val, 2))
  504. } else {
  505. paste("ZShift =", val)
  506. }
  507. },
  508. lm_ZScore = function(df, var) {
  509. val <- df[[paste0("Z_lm_", var)]]
  510. if (is.numeric(val)) {
  511. paste("lm ZScore =", round(val, 2))
  512. } else {
  513. paste("lm ZScore =", val)
  514. }
  515. },
  516. NG = function(df, var) paste("NG =", df$NG),
  517. DB = function(df, var) paste("DB =", df$DB),
  518. SM = function(df, var) paste("SM =", df$SM)
  519. )
  520. for (variable in variables) {
  521. # Dynamically generate the names of the columns
  522. var_info <- list(
  523. ylim = limits_map[[variable]],
  524. lm_model = df[[paste0("lm_", variable)]][[1]],
  525. sd_col = paste0("WT_sd_", variable),
  526. delta_var = paste0("Delta_", variable)
  527. )
  528. # Extract the precomputed linear model coefficients
  529. lm_line <- list(
  530. intercept = coef(var_info$lm_model)[1],
  531. slope = coef(var_info$lm_model)[2]
  532. )
  533. # Dynamically create annotations based on variable
  534. annotations <- lapply(names(annotation_positions[[variable]]), function(annotation_name) {
  535. y_pos <- annotation_positions[[variable]][[annotation_name]]
  536. label <- annotation_labels[[annotation_name]](df, variable)
  537. list(x = 1, y = y_pos, label = label)
  538. })
  539. # Add scatter plot configuration for this variable
  540. configs[[length(configs) + 1]] <- list(
  541. df = df,
  542. x_var = "conc_num_factor",
  543. y_var = var_info$delta_var,
  544. plot_type = "scatter",
  545. title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
  546. ylim_vals = var_info$ylim,
  547. annotations = annotations,
  548. lm_line = lm_line, # Precomputed linear model
  549. error_bar = TRUE,
  550. x_breaks = unique(df$conc_num_factor),
  551. x_labels = unique(as.character(df$conc_num)),
  552. x_label = unique(df$Drug[1]),
  553. shape = 3,
  554. size = 0.6,
  555. position = "jitter",
  556. coord_cartesian = c(0, max(var_info$ylim)) # You can customize this per plot as needed
  557. )
  558. # Add box plot configuration for this variable
  559. configs[[length(configs) + 1]] <- list(
  560. df = df,
  561. x_var = "conc_num_factor",
  562. y_var = variable,
  563. plot_type = "box",
  564. title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
  565. ylim_vals = var_info$ylim,
  566. annotations = annotations,
  567. error_bar = FALSE,
  568. x_breaks = unique(df$conc_num_factor),
  569. x_labels = unique(as.character(df$conc_num)),
  570. x_label = unique(df$Drug[1]),
  571. coord_cartesian = c(0, max(var_info$ylim)) # Customize this as needed
  572. )
  573. }
  574. return(configs)
  575. }
  576. # Adjust missing values and calculate ranks
  577. adjust_missing_and_rank <- function(df, variables) {
  578. # Adjust missing values in Avg_Zscore and Z_lm columns, and apply rank to the specified variables
  579. df <- df %>%
  580. mutate(across(all_of(variables), list(
  581. Avg_Zscore = ~ if_else(is.na(get(paste0("Avg_Zscore_", cur_column()))), 0.001, get(paste0("Avg_Zscore_", cur_column()))),
  582. Z_lm = ~ if_else(is.na(get(paste0("Z_lm_", cur_column()))), 0.001, get(paste0("Z_lm_", cur_column()))),
  583. Rank = ~ rank(get(paste0("Avg_Zscore_", cur_column()))),
  584. Rank_lm = ~ rank(get(paste0("Z_lm_", cur_column())))
  585. ), .names = "{fn}_{col}"))
  586. return(df)
  587. }
  588. generate_rank_plot_configs <- function(df, rank_var, zscore_var, var, is_lm = FALSE) {
  589. configs <- list()
  590. # Adjust titles for _lm plots if is_lm is TRUE
  591. plot_title_prefix <- if (is_lm) "Interaction Z score vs. Rank for" else "Average Z score vs. Rank for"
  592. # Annotated version (with text)
  593. for (sd_band in c(1, 2, 3)) {
  594. configs[[length(configs) + 1]] <- list(
  595. df = df,
  596. x_var = rank_var,
  597. y_var = zscore_var,
  598. plot_type = "rank",
  599. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  600. sd_band = sd_band,
  601. enhancer_label = list(
  602. x = nrow(df) / 2, y = 10,
  603. label = paste("Deletion Enhancers =", nrow(df[df[[zscore_var]] >= sd_band, ]))
  604. ),
  605. suppressor_label = list(
  606. x = nrow(df) / 2, y = -10,
  607. label = paste("Deletion Suppressors =", nrow(df[df[[zscore_var]] <= -sd_band, ]))
  608. ),
  609. shape = 3,
  610. size = 0.1
  611. )
  612. }
  613. # Non-annotated version (_notext)
  614. for (sd_band in c(1, 2, 3)) {
  615. configs[[length(configs) + 1]] <- list(
  616. df = df,
  617. x_var = rank_var,
  618. y_var = zscore_var,
  619. plot_type = "rank",
  620. title = paste(plot_title_prefix, var, "above", sd_band, "SD"),
  621. sd_band = sd_band,
  622. enhancer_label = NULL, # No annotations for _notext
  623. suppressor_label = NULL, # No annotations for _notext
  624. shape = 3,
  625. size = 0.1,
  626. position = "jitter"
  627. )
  628. }
  629. return(configs)
  630. }
  631. generate_correlation_plot_configs <- function(df, variables) {
  632. configs <- list()
  633. for (variable in variables) {
  634. z_lm_var <- paste0("Z_lm_", variable)
  635. avg_zscore_var <- paste0("Avg_Zscore_", variable)
  636. lm_r_squared_col <- paste0("lm_R_squared_", variable)
  637. configs[[length(configs) + 1]] <- list(
  638. df = df,
  639. x_var = avg_zscore_var,
  640. y_var = z_lm_var,
  641. plot_type = "correlation",
  642. title = paste("Avg Zscore vs lm", variable),
  643. color_var = "Overlap",
  644. correlation_text = paste("R-squared =", round(df[[lm_r_squared_col]][1], 2)),
  645. shape = 3,
  646. geom_smooth = TRUE,
  647. rect = list(xmin = -2, xmax = 2, ymin = -2, ymax = 2), # To add the geom_rect layer
  648. annotate_position = list(x = 0, y = 0), # Position for the R-squared text
  649. legend_position = "right"
  650. )
  651. }
  652. return(configs)
  653. }
  654. main <- function() {
  655. lapply(names(args$experiments), function(exp_name) {
  656. exp <- args$experiments[[exp_name]]
  657. exp_path <- exp$path
  658. exp_sd <- exp$sd
  659. out_dir <- file.path(exp_path, "zscores")
  660. out_dir_qc <- file.path(exp_path, "zscores", "qc")
  661. dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
  662. dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
  663. summary_vars <- c("L", "K", "r", "AUC", "delta_bg") # fields to filter and calculate summary stats across
  664. group_vars <- c("OrfRep", "conc_num", "conc_num_factor") # default fields to group by
  665. orf_group_vars <- c("OrfRep", "Gene", "num")
  666. print_vars <- c("OrfRep", "Plate", "scan", "Col", "Row", "num", "OrfRep", "conc_num", "conc_num_factor",
  667. "delta_bg_tolerance", "delta_bg", "Gene", "L", "K", "r", "AUC", "NG", "DB")
  668. message("Loading and filtering data")
  669. df <- load_and_process_data(args$easy_results_file, sd = exp_sd)
  670. df <- update_gene_names(df, args$sgd_gene_list)
  671. df <- as_tibble(df)
  672. # Filter rows that are above tolerance for quality control plots
  673. df_above_tolerance <- df %>% filter(DB == 1)
  674. # Set L, r, K, AUC (and delta_bg?) to NA for rows that are above tolerance
  675. df_na <- df %>% mutate(across(all_of(summary_vars), ~ ifelse(DB == 1, NA, .)))
  676. # Remove rows with 0 values in L
  677. df_no_zeros <- df_na %>% filter(L > 0)
  678. # Save some constants
  679. max_conc <- max(df$conc_num_factor)
  680. l_half_median <- (median(df_above_tolerance$L, na.rm = TRUE)) / 2
  681. k_half_median <- (median(df_above_tolerance$K, na.rm = TRUE)) / 2
  682. message("Calculating summary statistics before quality control")
  683. ss <- calculate_summary_stats(df, summary_vars, group_vars = group_vars)
  684. # df_ss <- ss$summary_stats
  685. df_stats <- ss$df_with_stats
  686. df_filtered_stats <- df_stats %>%
  687. {
  688. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  689. if (nrow(non_finite_rows) > 0) {
  690. message("Filtering out the following non-finite rows:")
  691. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  692. }
  693. filter(., if_all(c(L), is.finite))
  694. }
  695. message("Calculating summary statistics after quality control")
  696. ss <- calculate_summary_stats(df_na, summary_vars, group_vars = group_vars)
  697. df_na_ss <- ss$summary_stats
  698. df_na_stats <- ss$df_with_stats
  699. write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
  700. # Filter out non-finite rows for plotting
  701. df_na_filtered_stats <- df_na_stats %>%
  702. {
  703. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  704. if (nrow(non_finite_rows) > 0) {
  705. message("Removed the following non-finite rows:")
  706. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  707. }
  708. filter(., if_all(c(L), is.finite))
  709. }
  710. message("Calculating summary statistics after quality control excluding zero values")
  711. ss <- calculate_summary_stats(df_no_zeros, summary_vars, group_vars = group_vars)
  712. df_no_zeros_stats <- ss$df_with_stats
  713. df_no_zeros_filtered_stats <- df_no_zeros_stats %>%
  714. {
  715. non_finite_rows <- filter(., if_any(c(L), ~ !is.finite(.)))
  716. if (nrow(non_finite_rows) > 0) {
  717. message("Removed the following non-finite rows:")
  718. print(non_finite_rows %>% select(any_of(print_vars)), n = 200)
  719. }
  720. filter(., if_all(c(L), is.finite))
  721. }
  722. message("Filtering by 2SD of K")
  723. df_na_within_2sd_k <- df_na_stats %>%
  724. filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
  725. df_na_outside_2sd_k <- df_na_stats %>%
  726. filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
  727. message("Calculating summary statistics for L within 2SD of K")
  728. # TODO We're omitting the original z_max calculation, not sure if needed?
  729. ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  730. l_within_2sd_k_ss <- ss$summary_stats
  731. df_na_l_within_2sd_k_stats <- ss$df_with_stats
  732. write.csv(l_within_2sd_k_ss,
  733. file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"), row.names = FALSE)
  734. message("Calculating summary statistics for L outside 2SD of K")
  735. ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
  736. l_outside_2sd_k_ss <- ss$summary_stats
  737. df_na_l_outside_2sd_k_stats <- ss$df_with_stats
  738. write.csv(l_outside_2sd_k_ss,
  739. file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"), row.names = FALSE)
  740. # Each plots list corresponds to a file
  741. message("Generating quality control plot configurations")
  742. l_vs_k_plots <- list(
  743. list(
  744. df = df,
  745. x_var = "L",
  746. y_var = "K",
  747. plot_type = "scatter",
  748. delta_bg_point = TRUE,
  749. title = "Raw L vs K before quality control",
  750. color_var = "conc_num",
  751. error_bar = FALSE,
  752. legend_position = "right"
  753. )
  754. )
  755. frequency_delta_bg_plots <- list(
  756. list(
  757. df = df_filtered_stats,
  758. x_var = "delta_bg",
  759. y_var = NULL,
  760. plot_type = "density",
  761. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  762. color_var = "conc_num",
  763. x_label = "Delta Background",
  764. y_label = "Density",
  765. error_bar = FALSE,
  766. legend_position = "right"),
  767. list(
  768. df = df_filtered_stats,
  769. x_var = "delta_bg",
  770. y_var = NULL,
  771. plot_type = "bar",
  772. title = "Plate analysis by Drug Conc for Delta Background before quality control",
  773. color_var = "conc_num",
  774. x_label = "Delta Background",
  775. y_label = "Count",
  776. error_bar = FALSE,
  777. legend_position = "right")
  778. )
  779. above_threshold_plots <- list(
  780. list(
  781. df = df_above_tolerance,
  782. x_var = "L",
  783. y_var = "K",
  784. plot_type = "scatter",
  785. delta_bg_point = TRUE,
  786. title = paste("Raw L vs K for strains above Delta Background threshold of",
  787. df_above_tolerance$delta_bg_tolerance[[1]], "or above"),
  788. color_var = "conc_num",
  789. position = "jitter",
  790. annotations = list(
  791. x = l_half_median,
  792. y = k_half_median,
  793. label = paste("# strains above Delta Background tolerance =", nrow(df_above_tolerance))
  794. ),
  795. error_bar = FALSE,
  796. legend_position = "right"
  797. )
  798. )
  799. plate_analysis_plots <- list()
  800. for (var in summary_vars) {
  801. for (stage in c("before", "after")) {
  802. if (stage == "before") {
  803. df_plot <- df_filtered_stats
  804. } else {
  805. df_plot <- df_na_filtered_stats
  806. }
  807. config <- list(
  808. df = df_plot,
  809. x_var = "scan",
  810. y_var = var,
  811. plot_type = "scatter",
  812. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  813. error_bar = TRUE,
  814. color_var = "conc_num",
  815. position = "jitter")
  816. plate_analysis_plots <- append(plate_analysis_plots, list(config))
  817. }
  818. }
  819. plate_analysis_boxplots <- list()
  820. for (var in summary_vars) {
  821. for (stage in c("before", "after")) {
  822. if (stage == "before") {
  823. df_plot <- df_filtered_stats
  824. } else {
  825. df_plot <- df_na_filtered_stats
  826. }
  827. config <- list(
  828. df = df_plot,
  829. x_var = "scan",
  830. y_var = var,
  831. plot_type = "box",
  832. title = paste("Plate analysis by Drug Conc for", var, stage, "quality control"),
  833. error_bar = FALSE,
  834. color_var = "conc_num")
  835. plate_analysis_boxplots <- append(plate_analysis_boxplots, list(config))
  836. }
  837. }
  838. plate_analysis_no_zeros_plots <- list()
  839. for (var in summary_vars) {
  840. config <- list(
  841. df = df_no_zeros_filtered_stats,
  842. x_var = "scan",
  843. y_var = var,
  844. plot_type = "scatter",
  845. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  846. error_bar = TRUE,
  847. color_var = "conc_num",
  848. position = "jitter")
  849. plate_analysis_no_zeros_plots <- append(plate_analysis_no_zeros_plots, list(config))
  850. }
  851. plate_analysis_no_zeros_boxplots <- list()
  852. for (var in summary_vars) {
  853. config <- list(
  854. df = df_no_zeros_filtered_stats,
  855. x_var = "scan",
  856. y_var = var,
  857. plot_type = "box",
  858. title = paste("Plate analysis by Drug Conc for", var, "after quality control"),
  859. error_bar = FALSE,
  860. color_var = "conc_num"
  861. )
  862. plate_analysis_no_zeros_boxplots <- append(plate_analysis_no_zeros_boxplots, list(config))
  863. }
  864. l_outside_2sd_k_plots <- list(
  865. list(
  866. df = df_na_l_outside_2sd_k_stats,
  867. x_var = "L",
  868. y_var = "K",
  869. plot_type = "scatter",
  870. delta_bg_point = TRUE,
  871. title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
  872. color_var = "conc_num",
  873. position = "jitter",
  874. legend_position = "right"
  875. )
  876. )
  877. delta_bg_outside_2sd_k_plots <- list(
  878. list(
  879. df = df_na_l_outside_2sd_k_stats,
  880. x_var = "delta_bg",
  881. y_var = "K",
  882. plot_type = "scatter",
  883. gene_point = TRUE,
  884. title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
  885. color_var = "conc_num",
  886. position = "jitter",
  887. legend_position = "right"
  888. )
  889. )
  890. message("Generating quality control plots")
  891. generate_and_save_plots(out_dir_qc, "L_vs_K_before_quality_control", l_vs_k_plots)
  892. generate_and_save_plots(out_dir_qc, "frequency_delta_background", frequency_delta_bg_plots)
  893. generate_and_save_plots(out_dir_qc, "L_vs_K_above_threshold", above_threshold_plots)
  894. generate_and_save_plots(out_dir_qc, "plate_analysis", plate_analysis_plots)
  895. generate_and_save_plots(out_dir_qc, "plate_analysis_boxplots", plate_analysis_boxplots)
  896. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros", plate_analysis_no_zeros_plots)
  897. generate_and_save_plots(out_dir_qc, "plate_analysis_no_zeros_boxplots", plate_analysis_no_zeros_boxplots)
  898. generate_and_save_plots(out_dir_qc, "L_vs_K_for_strains_2SD_outside_mean_K", l_outside_2sd_k_plots)
  899. generate_and_save_plots(out_dir_qc, "delta_background_vs_K_for_strains_2sd_outside_mean_K", delta_bg_outside_2sd_k_plots)
  900. # Clean up
  901. rm(df, df_above_tolerance, df_no_zeros, df_no_zeros_stats, df_no_zeros_filtered_stats, ss)
  902. gc()
  903. # TODO: Originally this filtered L NA's
  904. # Let's try to avoid for now since stats have already been calculated
  905. # Process background strains
  906. bg_strains <- c("YDL227C")
  907. lapply(bg_strains, function(strain) {
  908. message("Processing background strain: ", strain)
  909. # Handle missing data by setting zero values to NA
  910. # and then removing any rows with NA in L col
  911. df_bg <- df_na %>%
  912. filter(OrfRep == strain) %>%
  913. mutate(
  914. L = if_else(L == 0, NA, L),
  915. K = if_else(K == 0, NA, K),
  916. r = if_else(r == 0, NA, r),
  917. AUC = if_else(AUC == 0, NA, AUC)
  918. ) %>%
  919. filter(!is.na(L))
  920. # Recalculate summary statistics for the background strain
  921. message("Calculating summary statistics for background strain")
  922. ss_bg <- calculate_summary_stats(df_bg, summary_vars, group_vars = group_vars)
  923. summary_stats_bg <- ss_bg$summary_stats
  924. # df_bg_stats <- ss_bg$df_with_stats
  925. write.csv(summary_stats_bg,
  926. file = file.path(out_dir, paste0("SummaryStats_BackgroundStrains_", strain, ".csv")),
  927. row.names = FALSE)
  928. # Filter reference and deletion strains
  929. # Formerly X2_RF (reference strains)
  930. df_reference <- df_na_stats %>%
  931. filter(OrfRep == strain) %>%
  932. mutate(SM = 0)
  933. # Formerly X2 (deletion strains)
  934. df_deletion <- df_na_stats %>%
  935. filter(OrfRep != strain) %>%
  936. mutate(SM = 0)
  937. # Set the missing values to the highest theoretical value at each drug conc for L
  938. # Leave other values as 0 for the max/min
  939. reference_strain <- df_reference %>%
  940. group_by(conc_num) %>%
  941. mutate(
  942. max_l_theoretical = max(max_L, na.rm = TRUE),
  943. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  944. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  945. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  946. ungroup()
  947. # Ditto for deletion strains
  948. deletion_strains <- df_deletion %>%
  949. group_by(conc_num) %>%
  950. mutate(
  951. max_l_theoretical = max(max_L, na.rm = TRUE),
  952. L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
  953. SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
  954. L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
  955. ungroup()
  956. # Calculate interactions
  957. interaction_vars <- c("L", "K", "r", "AUC")
  958. message("Calculating interaction scores")
  959. # print("Reference strain:")
  960. # print(head(reference_strain))
  961. reference_results <- calculate_interaction_scores(reference_strain, max_conc, interaction_vars, group_vars = orf_group_vars)
  962. # print("Deletion strains:")
  963. # print(head(deletion_strains))
  964. deletion_results <- calculate_interaction_scores(deletion_strains, max_conc, interaction_vars, group_vars = orf_group_vars)
  965. zscores_calculations_reference <- reference_results$calculations
  966. zscores_interactions_reference <- reference_results$interactions
  967. zscores_joined_reference <- reference_results$joined
  968. zscores_calculations <- deletion_results$calculations
  969. zscores_interactions <- deletion_results$interactions
  970. zscores_joined <- deletion_results$joined
  971. # Writing Z-Scores to file
  972. write.csv(zscores_calculations_reference, file = file.path(out_dir, "RF_ZScores_Calculations.csv"), row.names = FALSE)
  973. write.csv(zscores_calculations, file = file.path(out_dir, "ZScores_Calculations.csv"), row.names = FALSE)
  974. write.csv(zscores_interactions_reference, file = file.path(out_dir, "RF_ZScores_Interaction.csv"), row.names = FALSE)
  975. write.csv(zscores_interactions, file = file.path(out_dir, "ZScores_Interaction.csv"), row.names = FALSE)
  976. # Create interaction plots
  977. message("Generating interaction plot configurations")
  978. reference_plot_configs <- generate_interaction_plot_configs(zscores_joined_reference, interaction_vars)
  979. deletion_plot_configs <- generate_interaction_plot_configs(zscores_joined, interaction_vars)
  980. message("Generating interaction plots")
  981. generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  982. generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
  983. # Define conditions for enhancers and suppressors
  984. # TODO Add to study config file?
  985. threshold <- 2
  986. enhancer_condition_L <- zscores_interactions$Avg_Zscore_L >= threshold
  987. suppressor_condition_L <- zscores_interactions$Avg_Zscore_L <= -threshold
  988. enhancer_condition_K <- zscores_interactions$Avg_Zscore_K >= threshold
  989. suppressor_condition_K <- zscores_interactions$Avg_Zscore_K <= -threshold
  990. # Subset data
  991. enhancers_L <- zscores_interactions[enhancer_condition_L, ]
  992. suppressors_L <- zscores_interactions[suppressor_condition_L, ]
  993. enhancers_K <- zscores_interactions[enhancer_condition_K, ]
  994. suppressors_K <- zscores_interactions[suppressor_condition_K, ]
  995. # Save enhancers and suppressors
  996. message("Writing enhancer/suppressor csv files")
  997. write.csv(enhancers_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L.csv"), row.names = FALSE)
  998. write.csv(suppressors_L, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L.csv"), row.names = FALSE)
  999. write.csv(enhancers_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K.csv"), row.names = FALSE)
  1000. write.csv(suppressors_K, file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K.csv"), row.names = FALSE)
  1001. # Combine conditions for enhancers and suppressors
  1002. enhancers_and_suppressors_L <- zscores_interactions[enhancer_condition_L | suppressor_condition_L, ]
  1003. enhancers_and_suppressors_K <- zscores_interactions[enhancer_condition_K | suppressor_condition_K, ]
  1004. # Save combined enhancers and suppressors
  1005. write.csv(enhancers_and_suppressors_L,
  1006. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_L.csv"), row.names = FALSE)
  1007. write.csv(enhancers_and_suppressors_K,
  1008. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_and_Suppressors_K.csv"), row.names = FALSE)
  1009. # Handle linear model based enhancers and suppressors
  1010. lm_threshold <- 2
  1011. enhancers_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L >= lm_threshold, ]
  1012. suppressors_lm_L <- zscores_interactions[zscores_interactions$Z_lm_L <= -lm_threshold, ]
  1013. enhancers_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K >= lm_threshold, ]
  1014. suppressors_lm_K <- zscores_interactions[zscores_interactions$Z_lm_K <= -lm_threshold, ]
  1015. # Save linear model based enhancers and suppressors
  1016. message("Writing linear model enhancer/suppressor csv files")
  1017. write.csv(enhancers_lm_L,
  1018. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_L_lm.csv"), row.names = FALSE)
  1019. write.csv(suppressors_lm_L,
  1020. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_L_lm.csv"), row.names = FALSE)
  1021. write.csv(enhancers_lm_K,
  1022. file = file.path(out_dir, "ZScores_Interaction_Deletion_Enhancers_K_lm.csv"), row.names = FALSE)
  1023. write.csv(suppressors_lm_K,
  1024. file = file.path(out_dir, "ZScores_Interaction_Deletion_Suppressors_K_lm.csv"), row.names = FALSE)
  1025. # TODO needs explanation
  1026. zscores_interactions_adjusted <- adjust_missing_and_rank(zscores_interactions)
  1027. rank_plot_configs <- c(
  1028. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_L", "Avg_Zscore_L", "L"),
  1029. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_K", "Avg_Zscore_K", "K")
  1030. )
  1031. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1032. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1033. rank_lm_plot_config <- c(
  1034. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1035. generate_rank_plot_configs(zscores_interactions_adjusted, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1036. )
  1037. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1038. plot_configs = rank_lm_plot_config, grid_layout = list(ncol = 3, nrow = 2))
  1039. # Formerly X_NArm
  1040. zscores_interactions_filtered <- zscores_interactions %>%
  1041. group_by(across(all_of(orf_group_vars))) %>%
  1042. filter(!is.na(Z_lm_L) | !is.na(Avg_Zscore_L))
  1043. # Final filtered correlation calculations and plots
  1044. lm_results <- zscores_interactions_filtered %>%
  1045. summarise(
  1046. lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
  1047. lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
  1048. lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
  1049. lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA
  1050. )
  1051. zscores_interactions_filtered <- zscores_interactions_filtered %>%
  1052. left_join(lm_results, by = orf_group_vars) %>%
  1053. mutate(
  1054. Overlap = case_when(
  1055. Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
  1056. Z_lm_L <= -2 & Avg_Zscore_L <= -2 ~ "Deletion Suppressor Both",
  1057. Z_lm_L >= 2 & Avg_Zscore_L <= 2 ~ "Deletion Enhancer lm only",
  1058. Z_lm_L <= -2 & Avg_Zscore_L >= -2 ~ "Deletion Suppressor lm only",
  1059. Z_lm_L >= 2 & Avg_Zscore_L <= -2 ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
  1060. Z_lm_L <= -2 & Avg_Zscore_L >= 2 ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
  1061. TRUE ~ "No Effect"
  1062. )
  1063. ) %>%
  1064. ungroup()
  1065. rank_plot_configs <- c(
  1066. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_L", "Avg_Zscore_L", "L"),
  1067. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_K", "Avg_Zscore_K", "K")
  1068. )
  1069. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots",
  1070. plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1071. rank_lm_plot_configs <- c(
  1072. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_L", "Z_lm_L", "L", is_lm = TRUE),
  1073. generate_rank_plot_configs(zscores_interactions_filtered, "Rank_lm_K", "Z_lm_K", "K", is_lm = TRUE)
  1074. )
  1075. generate_and_save_plots(output_dir = out_dir, file_name = "RankPlots_lm",
  1076. plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
  1077. correlation_plot_configs <- generate_correlation_plot_configs(zscores_interactions_filtered, interaction_vars)
  1078. generate_and_save_plots(output_dir = out_dir, file_name = "Avg_Zscore_vs_lm_NA_rm",
  1079. plot_configs = correlation_plot_configs, grid_layout = list(ncol = 2, nrow = 2))
  1080. })
  1081. })
  1082. }
  1083. main()