소스 검색

Tidy up groupings

Bryan Roessler 7 달 전
부모
커밋
268d7decb5
1개의 변경된 파일41개의 추가작업 그리고 35개의 파일을 삭제
  1. 41 35
      qhtcp-workflow/apps/r/calculate_interaction_zscores.R

+ 41 - 35
qhtcp-workflow/apps/r/calculate_interaction_zscores.R

@@ -160,22 +160,33 @@ update_gene_names <- function(df, sgd_gene_list) {
 
 calculate_summary_stats <- function(df, variables, group_vars) {
 
+
+  summary_stats <- df %>%
+    group_by(across(all_of(group_vars))) %>%
+    summarise(
+      N = n(),
+      sd_check = sd(L, na.rm = TRUE),  # Test sd on a specific variable, e.g., L
+      se_check = sd(L, na.rm = TRUE) / sqrt(N)  # Test se on a specific variable, e.g., L
+    )
+
   summary_stats <- df %>%
     group_by(across(all_of(group_vars))) %>%
     summarise(
-      N = sum(!is.na(L)),
+      N = n(),
       across(all_of(variables), list(
         mean = ~mean(., na.rm = TRUE),
         median = ~median(., na.rm = TRUE),
-        max = ~ifelse(all(is.na(.)), NA, max(., na.rm = TRUE)),
-        min = ~ifelse(all(is.na(.)), NA, min(., na.rm = TRUE)),
+        max = ~max(., na.rm = TRUE),
+        min = ~min(., na.rm = TRUE),
         sd = ~sd(., na.rm = TRUE),
-        se = ~ifelse(all(is.na(.)), NA, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1))
-      ),
-      .names = "{.fn}_{.col}"),
+        se = ~sd(., na.rm = TRUE) / sqrt(N)  # Corrected SE calculation
+      ), .names = "{.fn}_{.col}"),
       .groups = "drop"
     )
 
+  # sd = ~sd(., na.rm = TRUE)
+  # se = ~sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1)
+
   # Create a cleaned version of df that doesn't overlap with summary_stats
   cols_to_keep <- setdiff(names(df), names(summary_stats)[-which(names(summary_stats) %in% group_vars)])
   df_cleaned <- df %>%
@@ -193,22 +204,22 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars) {
 
   # Pull the background means and standard deviations from zero concentration
   bg_means <- list(
-    L = df %>% filter(conc_num_factor == 0) %>% pull(mean_L) %>% first(),
-    K = df %>% filter(conc_num_factor == 0) %>% pull(mean_K) %>% first(),
-    r = df %>% filter(conc_num_factor == 0) %>% pull(mean_r) %>% first(),
-    AUC = df %>% filter(conc_num_factor == 0) %>% pull(mean_AUC) %>% first()
+    L = df %>% filter(conc_num == 0) %>% pull(mean_L) %>% first(),
+    K = df %>% filter(conc_num == 0) %>% pull(mean_K) %>% first(),
+    r = df %>% filter(conc_num == 0) %>% pull(mean_r) %>% first(),
+    AUC = df %>% filter(conc_num == 0) %>% pull(mean_AUC) %>% first()
   )
 
   bg_sd <- list(
-    L = df %>% filter(conc_num_factor == 0) %>% pull(sd_L) %>% first(),
-    K = df %>% filter(conc_num_factor == 0) %>% pull(sd_K) %>% first(),
-    r = df %>% filter(conc_num_factor == 0) %>% pull(sd_r) %>% first(),
-    AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
+    L = df %>% filter(conc_num == 0) %>% pull(sd_L) %>% first(),
+    K = df %>% filter(conc_num == 0) %>% pull(sd_K) %>% first(),
+    r = df %>% filter(conc_num == 0) %>% pull(sd_r) %>% first(),
+    AUC = df %>% filter(conc_num == 0) %>% pull(sd_AUC) %>% first()
   )
 
   stats <- calculate_summary_stats(df,
     variables = variables,
-    group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"
+    group_vars = c("OrfRep", "Gene", "num", "conc_num_factor"
     ))$summary_stats
 
   stats <- df %>%
@@ -346,10 +357,10 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars) {
       "NG", "SM", "DB")
     
   calculations_joined <- df %>% select(-any_of(setdiff(names(calculations), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
-  calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
+  calculations_joined <- left_join(calculations_joined, calculations, by = c("OrfRep", "Gene", "num", "conc_num_factor"))
 
   interactions_joined <- df %>% select(-any_of(setdiff(names(interactions), c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))))
-  interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
+  interactions_joined <- left_join(interactions_joined, interactions, by = c("OrfRep", "Gene", "num", "conc_num_factor"))
 
   return(list(calculations = calculations, interactions = interactions, interactions_joined = interactions_joined,
     calculations_joined = calculations_joined))
@@ -819,7 +830,7 @@ generate_rank_plot_configs <- function(df_filtered, variables, is_lm = FALSE) {
           )
         )
       } else {
-        x_var <- paste0("Rank", variable)
+        x_var <- paste0("Rank_", variable)
         y_var <- paste0("Rank_lm_", variable)
         title_suffix <- paste("Rank Avg Zscore vs lm", variable)
         rectangles <- NULL
@@ -927,11 +938,10 @@ generate_correlation_plot_configs <- function(df) {
 filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FALSE,
   rank = FALSE, limits_map = NULL, verbose = TRUE) {
   
-  # Precompute Column Names for Efficiency
   avg_zscore_cols <- paste0("Avg_Zscore_", variables)
   z_lm_cols <- paste0("Z_lm_", variables)
   
-  # Adjust NAs if 'adjust' is TRUE
+  # Adjust NAs to .001 for linear model
   if (adjust) {
     if (verbose) message("Replacing NA with 0.001 for Avg_Zscore_ and Z_lm_ columns.")
     df <- df %>%
@@ -941,25 +951,23 @@ filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FAL
       )
   }
   
-  # Filter Non-Finite Values if 'nf' is TRUE
+  # Filter non-finite values
   if (nf) {
     if (verbose) message("Filtering non-finite values for variables: ", paste(variables, collapse = ", "))
     
-    # Identify non-finite rows for logging
     non_finite_df <- df %>%
       filter(if_any(all_of(variables), ~ !is.finite(.)))
     
     if (verbose && nrow(non_finite_df) > 0) {
-      message("Non-finite rows for variables ", paste(variables, collapse = ", "), ":")
+      message("Filtering non-finite rows for variables ", paste(variables, collapse = ", "), ":")
       print(non_finite_df)
     }
     
-    # Keep only rows where all specified variables are finite
     df <- df %>%
       filter(if_all(all_of(variables), ~ is.finite(.)))
   }
   
-  # Filter Missing Values if 'missing' is TRUE
+  # Filter missing values
   if (missing) {
     if (verbose) message("Filtering missing values for variables: ", paste(variables, collapse = ", "))
     
@@ -977,7 +985,7 @@ filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FAL
       filter(if_all(all_of(variables), ~ !is.na(.)))
   }
   
-  # Apply Limits from 'limits_map' if Provided
+  # Apply Limits from 'limits_map' if provided
   if (!is.null(limits_map)) {
     for (variable in names(limits_map)) {
       if (variable %in% variables) {
@@ -985,7 +993,6 @@ filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FAL
         
         if (verbose) message("Applying limits for variable ", variable, ": [", ylim_vals[1], ", ", ylim_vals[2], "].")
         
-        # Identify out-of-range data for logging
         out_of_range_df <- df %>%
           filter(.data[[variable]] < ylim_vals[1] | .data[[variable]] > ylim_vals[2])
         
@@ -994,7 +1001,6 @@ filter_data <- function(df, variables, nf = FALSE, missing = FALSE, adjust = FAL
           print(out_of_range_df)
         }
         
-        # Keep only rows within the specified limits
         df <- df %>%
           filter(.data[[variable]] >= ylim_vals[1] & .data[[variable]] <= ylim_vals[2])
       }
@@ -1053,7 +1059,7 @@ main <- function() {
     ss <- calculate_summary_stats(
       df = df,
       variables = summary_vars,
-      group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
+      group_vars = c("OrfRep", "conc_num_factor"))
     df_stats <- ss$df_with_stats
     message("Filtering non-finite data")
     df_filtered_stats <- filter_data(df_stats, c("L"), nf = TRUE)
@@ -1062,7 +1068,7 @@ main <- function() {
     ss <- calculate_summary_stats(
       df = df_na,
       variables = summary_vars,
-      group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
+      group_vars = c("OrfRep", "conc_num_factor"))
     df_na_ss <- ss$summary_stats
     df_na_stats <- ss$df_with_stats
     write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
@@ -1072,7 +1078,7 @@ main <- function() {
     ss <- calculate_summary_stats(
       df = df_no_zeros,
       variables = summary_vars,
-      group_vars = c("OrfRep", "conc_num", "conc_num_factor"))
+      group_vars = c("OrfRep", "conc_num_factor"))
     df_no_zeros_stats <- ss$df_with_stats
     df_no_zeros_filtered_stats <- filter_data(df_no_zeros_stats, c("L"), nf = TRUE)
 
@@ -1084,14 +1090,14 @@ main <- function() {
 
     message("Calculating summary statistics for L within 2SD of K")
     # TODO We're omitting the original z_max calculation, not sure if needed?
-    ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
+    ss <- calculate_summary_stats(df_na_within_2sd_k, "L", group_vars = c("conc_num_factor"))
     # df_na_l_within_2sd_k_stats <- ss$df_with_stats
     write.csv(ss$summary_stats,
       file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
       row.names = FALSE)
     
     message("Calculating summary statistics for L outside 2SD of K")
-    ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor"))
+    ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num_factor"))
     df_na_l_outside_2sd_k_stats <- ss$df_with_stats
     write.csv(ss$summary_stats,
       file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
@@ -1266,7 +1272,7 @@ main <- function() {
       # Set the missing values to the highest theoretical value at each drug conc for L
       # Leave other values as 0 for the max/min
       reference_strain <- df_reference %>%
-        group_by(conc_num) %>%
+        group_by(conc_num_factor) %>%
         mutate(
           max_l_theoretical = max(max_L, na.rm = TRUE),
           L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
@@ -1276,7 +1282,7 @@ main <- function() {
 
       # Ditto for deletion strains
       deletion_strains <- df_deletion %>%
-        group_by(conc_num) %>%
+        group_by(conc_num_factor) %>%
         mutate(
           max_l_theoretical = max(max_L, na.rm = TRUE),
           L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),