|
@@ -347,6 +347,25 @@ calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshol
|
|
|
}) %>%
|
|
|
ungroup()
|
|
|
|
|
|
+ # For interaction plot error bars
|
|
|
+ delta_means <- calculations %>%
|
|
|
+ group_by(across(all_of(group_vars))) %>%
|
|
|
+ summarise(
|
|
|
+ mean_Delta_L = mean(Delta_L, na.rm = TRUE),
|
|
|
+ mean_Delta_K = mean(Delta_K, na.rm = TRUE),
|
|
|
+ mean_Delta_r = mean(Delta_r, na.rm = TRUE),
|
|
|
+ mean_Delta_AUC = mean(Delta_AUC, na.rm = TRUE),
|
|
|
+ sd_Delta_L = sd(Delta_L, na.rm = TRUE),
|
|
|
+ sd_Delta_K = sd(Delta_K, na.rm = TRUE),
|
|
|
+ sd_Delta_r = sd(Delta_r, na.rm = TRUE),
|
|
|
+ sd_Delta_AUC = sd(Delta_AUC, na.rm = TRUE),
|
|
|
+
|
|
|
+ .groups = "drop"
|
|
|
+ )
|
|
|
+
|
|
|
+ calculations <- calculations %>%
|
|
|
+ left_join(delta_means, by = group_vars)
|
|
|
+
|
|
|
# Summary statistics for lm scores
|
|
|
lm_means_sds <- calculations %>%
|
|
|
summarise(
|
|
@@ -462,6 +481,7 @@ calculate_interaction_scores <- function(df, df_bg, group_vars, overlap_threshol
|
|
|
WT_sd_L, WT_sd_K, WT_sd_r, WT_sd_AUC,
|
|
|
Exp_L, Exp_K, Exp_r, Exp_AUC,
|
|
|
Delta_L, Delta_K, Delta_r, Delta_AUC,
|
|
|
+ mean_Delta_L, mean_Delta_K, mean_Delta_r, mean_Delta_AUC,
|
|
|
Zscore_L, Zscore_K, Zscore_r, Zscore_AUC
|
|
|
)
|
|
|
|
|
@@ -548,8 +568,8 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs) {
|
|
|
|
|
|
# Print rows being filtered out
|
|
|
if (nrow(out_of_bounds_df) > 0) {
|
|
|
- message("Filtered out rows outside y-limits:")
|
|
|
- print(out_of_bounds_df)
|
|
|
+ message("# of filtered rows outside y-limits (for plotting): ", nrow(out_of_bounds_df))
|
|
|
+ # print(out_of_bounds_df)
|
|
|
}
|
|
|
|
|
|
# Filter the valid data for plotting
|
|
@@ -646,11 +666,11 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs) {
|
|
|
}
|
|
|
|
|
|
# Convert ggplot to plotly for interactive version
|
|
|
- plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
|
|
|
+ # plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
|
|
|
|
|
|
# Store both static and interactive versions
|
|
|
static_plots[[i]] <- plot
|
|
|
- plotly_plots[[i]] <- plotly_plot
|
|
|
+ # plotly_plots[[i]] <- plotly_plot
|
|
|
}
|
|
|
|
|
|
# Print the plots in the current group to the PDF
|
|
@@ -987,7 +1007,7 @@ generate_interaction_plot_configs <- function(df, type) {
|
|
|
df = group_data,
|
|
|
plot_type = "scatter",
|
|
|
x_var = "conc_num_factor_factor",
|
|
|
- y_var = var,
|
|
|
+ y_var = paste0("Delta_", var),
|
|
|
x_label = unique(group_data$Drug)[1],
|
|
|
title = paste(OrfRepTitle, Gene, num, sep = " "),
|
|
|
coord_cartesian = y_limits,
|
|
@@ -1019,10 +1039,11 @@ generate_interaction_plot_configs <- function(df, type) {
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+ # Return plot configs
|
|
|
return(list(
|
|
|
- list(grid_layout = list(ncol = 2), plots = stats_plot_configs), # nrow will be calculated dynamically
|
|
|
- list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs), # nrow will be calculated dynamically
|
|
|
- list(grid_layout = list(ncol = 4), plots = delta_plot_configs) # nrow will be calculated dynamically
|
|
|
+ list(grid_layout = list(ncol = 2), plots = stats_plot_configs),
|
|
|
+ list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs),
|
|
|
+ list(grid_layout = list(ncol = 4), plots = delta_plot_configs) # nrow calculated dynamically
|
|
|
))
|
|
|
}
|
|
|
|
|
@@ -1464,7 +1485,8 @@ main <- function() {
|
|
|
variables = c("L", "K", "r", "AUC"),
|
|
|
group_vars = c("OrfRep", "Gene", "Drug", "num", "conc_num", "conc_num_factor_factor")
|
|
|
)$df_with_stats
|
|
|
- message("Calculating reference strain interaction scores")
|
|
|
+
|
|
|
+ message("Calculating reference strain interaction scores")
|
|
|
results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug", "num"))
|
|
|
df_calculations_reference <- results$calculations
|
|
|
df_interactions_reference <- results$interactions
|
|
@@ -1472,37 +1494,37 @@ main <- function() {
|
|
|
write.csv(df_calculations_reference, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
|
|
|
write.csv(df_interactions_reference, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
|
|
|
|
|
|
- # message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
|
|
|
- # df_deletion <- df_na_stats %>% # formerly X2
|
|
|
- # filter(OrfRep != strain) %>%
|
|
|
- # filter(!is.na(L)) %>%
|
|
|
- # group_by(OrfRep, Gene, conc_num) %>%
|
|
|
- # mutate(
|
|
|
- # max_l_theoretical = max(max_L, na.rm = TRUE),
|
|
|
- # L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
|
|
|
- # SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
|
|
|
- # L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
|
|
|
- # ungroup()
|
|
|
-
|
|
|
- # message("Calculating deletion strain(s) summary statistics")
|
|
|
- # df_deletion_stats <- calculate_summary_stats(
|
|
|
- # df = df_deletion,
|
|
|
- # variables = c("L", "K", "r", "AUC"),
|
|
|
- # group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
|
|
|
- # )$df_with_stats
|
|
|
-
|
|
|
- # message("Calculating deletion strain(s) interactions scores")
|
|
|
- # results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
|
|
|
- # df_calculations <- results$calculations
|
|
|
- # df_interactions <- results$interactions
|
|
|
- # df_interactions_joined <- results$full_data
|
|
|
- # write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
|
|
|
- # write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
|
|
|
-
|
|
|
message("Generating reference interaction plots")
|
|
|
reference_plot_configs <- generate_interaction_plot_configs(df_interactions_reference_joined, "reference")
|
|
|
generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
|
|
|
|
|
|
+ message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
|
|
|
+ df_deletion <- df_na_stats %>% # formerly X2
|
|
|
+ filter(OrfRep != strain) %>%
|
|
|
+ filter(!is.na(L)) %>%
|
|
|
+ group_by(OrfRep, Gene, conc_num) %>%
|
|
|
+ mutate(
|
|
|
+ max_l_theoretical = max(max_L, na.rm = TRUE),
|
|
|
+ L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
|
|
|
+ SM = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, 1, SM),
|
|
|
+ L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
|
|
|
+ ungroup()
|
|
|
+
|
|
|
+ message("Calculating deletion strain(s) summary statistics")
|
|
|
+ df_deletion_stats <- calculate_summary_stats(
|
|
|
+ df = df_deletion,
|
|
|
+ variables = c("L", "K", "r", "AUC"),
|
|
|
+ group_vars = c("OrfRep", "Gene", "Drug", "conc_num", "conc_num_factor_factor")
|
|
|
+ )$df_with_stats
|
|
|
+
|
|
|
+ message("Calculating deletion strain(s) interactions scores")
|
|
|
+ results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "Drug"))
|
|
|
+ df_calculations <- results$calculations
|
|
|
+ df_interactions <- results$interactions
|
|
|
+ df_interactions_joined <- results$full_data
|
|
|
+ write.csv(df_calculations, file = file.path(out_dir, "zscore_calculations.csv"), row.names = FALSE)
|
|
|
+ write.csv(df_interactions, file = file.path(out_dir, "zscore_interactions.csv"), row.names = FALSE)
|
|
|
+
|
|
|
message("Generating deletion interaction plots")
|
|
|
deletion_plot_configs <- generate_interaction_plot_configs(df_interactions_joined, "deletion")
|
|
|
generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
|