|
@@ -216,7 +216,16 @@ calculate_summary_stats <- function(df, variables, group_vars) {
|
|
|
return(list(summary_stats = summary_stats, df_with_stats = df_joined))
|
|
|
}
|
|
|
|
|
|
-calculate_interaction_scores <- function(df, bg_stats, group_vars, overlap_threshold = 2) {
|
|
|
+calculate_interaction_scores <- function(df, bg_df, group_vars, overlap_threshold = 2) {
|
|
|
+
|
|
|
+ bg_df_selected <- bg_df %>%
|
|
|
+ select(OrfRep, conc_num, conc_num_factor, conc_num_factor_factor,
|
|
|
+ mean_L, mean_K, mean_r, mean_AUC, sd_L, sd_K, sd_r, sd_AUC
|
|
|
+ )
|
|
|
+
|
|
|
+ df <- df %>%
|
|
|
+ left_join(bg_df_selected, by = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"),
|
|
|
+ suffix = c("", "_bg"))
|
|
|
|
|
|
# Calculate total concentration variables
|
|
|
total_conc_num <- length(unique(df$conc_num))
|
|
@@ -229,16 +238,26 @@ calculate_interaction_scores <- function(df, bg_stats, group_vars, overlap_thres
|
|
|
DB = sum(DB, na.rm = TRUE),
|
|
|
SM = sum(SM, na.rm = TRUE),
|
|
|
num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
|
|
|
+
|
|
|
+ # Assign WT values from the background data
|
|
|
+ WT_L = mean_L_bg,
|
|
|
+ WT_K = mean_K_bg,
|
|
|
+ WT_r = mean_r_bg,
|
|
|
+ WT_AUC = mean_AUC_bg,
|
|
|
+ WT_sd_L = sd_L_bg,
|
|
|
+ WT_sd_K = sd_K_bg,
|
|
|
+ WT_sd_r = sd_r_bg,
|
|
|
+ WT_sd_AUC = sd_AUC_bg,
|
|
|
|
|
|
# Calculate raw data
|
|
|
- Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
|
|
|
- Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
|
|
|
- Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
|
|
|
- Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
|
|
|
- Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
|
|
|
- Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
|
|
|
- Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
|
|
|
- Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
|
|
|
+ Raw_Shift_L = first(mean_L) - first(mean_L_bg),
|
|
|
+ Raw_Shift_K = first(mean_K) - first(mean_K_bg),
|
|
|
+ Raw_Shift_r = first(mean_r) - first(mean_r_bg),
|
|
|
+ Raw_Shift_AUC = first(mean_AUC) - first(mean_AUC_bg),
|
|
|
+ Z_Shift_L = Raw_Shift_L / first(sd_L_bg),
|
|
|
+ Z_Shift_K = Raw_Shift_K / first(sd_K_bg),
|
|
|
+ Z_Shift_r = Raw_Shift_r / first(sd_r_bg),
|
|
|
+ Z_Shift_AUC = Raw_Shift_AUC / first(sd_AUC_bg),
|
|
|
|
|
|
# Expected values
|
|
|
Exp_L = WT_L + Raw_Shift_L,
|
|
@@ -1073,59 +1092,12 @@ main <- function() {
|
|
|
dir.create(out_dir, recursive = TRUE, showWarnings = FALSE)
|
|
|
dir.create(out_dir_qc, recursive = TRUE, showWarnings = FALSE)
|
|
|
|
|
|
+ # Each list of plots corresponds to a separate file
|
|
|
message("Loading and filtering data for experiment: ", exp_name)
|
|
|
df <- load_and_filter_data(args$easy_results_file, sd = exp_sd) %>%
|
|
|
update_gene_names(args$sgd_gene_list) %>%
|
|
|
as_tibble()
|
|
|
|
|
|
- message("Calculating summary statistics before quality control")
|
|
|
- df_stats <- calculate_summary_stats(
|
|
|
- df = df,
|
|
|
- variables = c("L", "K", "r", "AUC", "delta_bg"),
|
|
|
- group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
|
|
|
-
|
|
|
- message("Calculating summary statistics after quality control")
|
|
|
- df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
|
|
|
- ss <- calculate_summary_stats(
|
|
|
- df = df_na,
|
|
|
- variables = c("L", "K", "r", "AUC", "delta_bg"),
|
|
|
- group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
|
|
|
- df_na_ss <- ss$summary_stats
|
|
|
- df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
|
|
|
- write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
|
|
|
- # For plotting (ggplot warns on NAs)
|
|
|
- df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
|
|
|
-
|
|
|
- message("Calculating summary statistics after quality control excluding zero values")
|
|
|
- df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
|
|
|
- df_no_zeros_stats <- calculate_summary_stats(
|
|
|
- df = df_no_zeros,
|
|
|
- variables = c("L", "K", "r", "AUC", "delta_bg"),
|
|
|
- group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
|
|
|
- )$df_with_stats
|
|
|
-
|
|
|
- message("Filtering by 2SD of K")
|
|
|
- df_na_within_2sd_k <- df_na_stats %>%
|
|
|
- filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
|
|
|
- df_na_outside_2sd_k <- df_na_stats %>%
|
|
|
- filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
|
|
|
-
|
|
|
- message("Calculating summary statistics for L within 2SD of K")
|
|
|
- # TODO We're omitting the original z_max calculation, not sure if needed?
|
|
|
- ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
|
|
|
- group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
|
|
|
- write.csv(ss,
|
|
|
- file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
|
|
|
- row.names = FALSE)
|
|
|
-
|
|
|
- message("Calculating summary statistics for L outside 2SD of K")
|
|
|
- ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
|
|
|
- df_na_l_outside_2sd_k_stats <- ss$df_with_stats
|
|
|
- write.csv(ss$summary_stats,
|
|
|
- file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
|
|
|
- row.names = FALSE)
|
|
|
-
|
|
|
- # Each list of plots corresponds to a file
|
|
|
l_vs_k_plot_configs <- list(
|
|
|
plots = list(
|
|
|
list(
|
|
@@ -1142,6 +1114,12 @@ main <- function() {
|
|
|
)
|
|
|
)
|
|
|
|
|
|
+ message("Calculating summary statistics before quality control")
|
|
|
+ df_stats <- calculate_summary_stats(
|
|
|
+ df = df,
|
|
|
+ variables = c("L", "K", "r", "AUC", "delta_bg"),
|
|
|
+ group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
|
|
|
+
|
|
|
frequency_delta_bg_plot_configs <- list(
|
|
|
plots = list(
|
|
|
list(
|
|
@@ -1171,7 +1149,9 @@ main <- function() {
|
|
|
)
|
|
|
)
|
|
|
|
|
|
+ message("Filtering rows above delta background tolerance for plotting")
|
|
|
df_above_tolerance <- df %>% filter(DB == 1)
|
|
|
+
|
|
|
above_threshold_plot_configs <- list(
|
|
|
plots = list(
|
|
|
list(
|
|
@@ -1196,6 +1176,49 @@ main <- function() {
|
|
|
)
|
|
|
)
|
|
|
)
|
|
|
+
|
|
|
+ message("Setting rows above delta background tolerance to NA")
|
|
|
+ df_na <- df %>% mutate(across(all_of(c("L", "K", "r", "AUC", "delta_bg")), ~ ifelse(DB == 1, NA, .))) # formerly X
|
|
|
+
|
|
|
+ message("Calculating summary statistics across all strains")
|
|
|
+ ss <- calculate_summary_stats(
|
|
|
+ df = df_na,
|
|
|
+ variables = c("L", "K", "r", "AUC", "delta_bg"),
|
|
|
+ group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
|
|
|
+ df_na_ss <- ss$summary_stats
|
|
|
+ df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
|
|
|
+ write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
|
|
|
+ # This can help bypass missing values ggplot warnings during testing
|
|
|
+ df_na_stats_filtered <- df_na_stats %>% filter(if_all(all_of(c("L", "K", "r", "AUC", "delta_bg")), is.finite))
|
|
|
+
|
|
|
+ message("Calculating summary statistics excluding zero values")
|
|
|
+ df_no_zeros <- df_na %>% filter(L > 0) # formerly X_noZero
|
|
|
+ df_no_zeros_stats <- calculate_summary_stats(
|
|
|
+ df = df_no_zeros,
|
|
|
+ variables = c("L", "K", "r", "AUC", "delta_bg"),
|
|
|
+ group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
|
|
|
+ )$df_with_stats
|
|
|
+
|
|
|
+ message("Filtering by 2SD of K")
|
|
|
+ df_na_within_2sd_k <- df_na_stats %>%
|
|
|
+ filter(K >= (mean_K - 2 * sd_K) & K <= (mean_K + 2 * sd_K))
|
|
|
+ df_na_outside_2sd_k <- df_na_stats %>%
|
|
|
+ filter(K < (mean_K - 2 * sd_K) | K > (mean_K + 2 * sd_K))
|
|
|
+
|
|
|
+ message("Calculating summary statistics for L within 2SD of K")
|
|
|
+ # TODO We're omitting the original z_max calculation, not sure if needed?
|
|
|
+ ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
|
|
|
+ group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
|
|
|
+ write.csv(ss,
|
|
|
+ file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
|
|
|
+ row.names = FALSE)
|
|
|
+
|
|
|
+ message("Calculating summary statistics for L outside 2SD of K")
|
|
|
+ ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
|
|
|
+ df_na_l_outside_2sd_k_stats <- ss$df_with_stats
|
|
|
+ write.csv(ss$summary_stats,
|
|
|
+ file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
|
|
|
+ row.names = FALSE)
|
|
|
|
|
|
plate_analysis_plot_configs <- generate_plate_analysis_plot_configs(
|
|
|
variables = c("L", "K", "r", "AUC", "delta_bg"),
|
|
@@ -1303,7 +1326,6 @@ main <- function() {
|
|
|
|
|
|
bg_strains <- c("YDL227C")
|
|
|
lapply(bg_strains, function(strain) {
|
|
|
-
|
|
|
message("Processing background strain: ", strain)
|
|
|
|
|
|
# Handle missing data by setting zero values to NA
|
|
@@ -1318,19 +1340,18 @@ main <- function() {
|
|
|
) %>%
|
|
|
filter(!is.na(L))
|
|
|
|
|
|
- # Recalculate summary statistics for the background strain
|
|
|
message("Calculating summary statistics for background strain")
|
|
|
- ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
|
|
|
+ ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
|
|
|
group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
|
|
|
summary_stats_bg <- ss_bg$summary_stats
|
|
|
- ss_bg_stats <- ss_bg$df_with_stats
|
|
|
- write.csv(summary_stats_bg,
|
|
|
+ df_bg_stats <- ss_bg$df_with_stats
|
|
|
+ write.csv(
|
|
|
+ summary_stats_bg,
|
|
|
file = file.path(out_dir, paste0("summary_stats_background_strain_", strain, ".csv")),
|
|
|
row.names = FALSE)
|
|
|
|
|
|
- # Set the missing values to the highest theoretical value at each drug conc for L
|
|
|
- # Leave other values as 0 for the max/min
|
|
|
- df_reference <- df_bg_stats %>% # formerly X2_RF
|
|
|
+ message("Setting missing reference values to the highest theoretical value at each drug conc for L")
|
|
|
+ df_reference <- df_na_stats %>% # formerly X2_RF
|
|
|
filter(OrfRep == strain) %>%
|
|
|
filter(!is.na(L)) %>%
|
|
|
group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
|
|
@@ -1341,11 +1362,21 @@ main <- function() {
|
|
|
L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
|
|
|
ungroup()
|
|
|
|
|
|
- # Ditto for deletion strains
|
|
|
+ message("Calculating reference strain interaction scores")
|
|
|
+ df_reference_stats <- calculate_summary_stats(
|
|
|
+ df = df_reference,
|
|
|
+ variables = c("L", "K", "r", "AUC"),
|
|
|
+ group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
|
|
|
+ )$df_with_stats
|
|
|
+ reference_results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "num"))
|
|
|
+ zscore_calculations_reference <- reference_results$calculations
|
|
|
+ zscore_interactions_reference <- reference_results$interactions
|
|
|
+ zscore_interactions_reference_joined <- reference_results$full_data
|
|
|
+
|
|
|
+ message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
|
|
|
df_deletion <- df_na_stats %>% # formerly X2
|
|
|
filter(OrfRep != strain) %>%
|
|
|
filter(!is.na(L)) %>%
|
|
|
- mutate(SM = 0) %>%
|
|
|
group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
|
|
|
mutate(
|
|
|
max_l_theoretical = max(max_L, na.rm = TRUE),
|
|
@@ -1354,24 +1385,13 @@ main <- function() {
|
|
|
L = ifelse(L >= max_l_theoretical & !is.na(L) & conc_num > 0, max_l_theoretical, L)) %>%
|
|
|
ungroup()
|
|
|
|
|
|
- message("Calculating reference strain interaction scores")
|
|
|
- df_reference_stats <- calculate_summary_stats(
|
|
|
- df = df_reference,
|
|
|
- variables = c("L", "K", "r", "AUC"),
|
|
|
- group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
|
|
|
- )$df_with_stats
|
|
|
- reference_results <- calculate_interaction_scores(df_reference_stats, bg_stats, group_vars = c("OrfRep", "Gene", "num"))
|
|
|
- zscore_calculations_reference <- reference_results$calculations
|
|
|
- zscore_interactions_reference <- reference_results$interactions
|
|
|
- zscore_interactions_reference_joined <- reference_results$full_data
|
|
|
-
|
|
|
message("Calculating deletion strain(s) interactions scores")
|
|
|
df_deletion_stats <- calculate_summary_stats(
|
|
|
df = df_deletion,
|
|
|
variables = c("L", "K", "r", "AUC"),
|
|
|
group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
|
|
|
)$df_with_stats
|
|
|
- deletion_results <- calculate_interaction_scores(df_deletion_stats, bg_stats, group_vars = c("OrfRep", "Gene"))
|
|
|
+ deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene"))
|
|
|
zscore_calculations <- deletion_results$calculations
|
|
|
zscore_interactions <- deletion_results$interactions
|
|
|
zscore_interactions_joined <- deletion_results$full_data
|