|
@@ -207,23 +207,15 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats, variables = c("
|
|
|
SM = sum(SM, na.rm = TRUE),
|
|
|
num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
|
|
|
|
|
|
- # Store the background data
|
|
|
- WT_L = bg_stats$WT_L,
|
|
|
- WT_K = bg_stats$WT_K,
|
|
|
- WT_r = bg_stats$WT_r,
|
|
|
- WT_AUC = bg_stats$WT_AUC,
|
|
|
- WT_sd_L = bg_stats$WT_sd_L,
|
|
|
- WT_sd_K = bg_stats$WT_sd_K,
|
|
|
- WT_sd_r = bg_stats$WT_sd_r,
|
|
|
- WT_sd_AUC = bg_stats$WT_sd_AUC,
|
|
|
- Raw_Shift_L = first(mean_L) - bg_means$L,
|
|
|
- Raw_Shift_K = first(mean_K) - bg_means$K,
|
|
|
- Raw_Shift_r = first(mean_r) - bg_means$r,
|
|
|
- Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
|
|
|
- Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
|
|
|
- Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
|
|
|
- Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
|
|
|
- Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC,
|
|
|
+ # Calculate raw data
|
|
|
+ Raw_Shift_L = first(mean_L) - bg_stats$L,
|
|
|
+ Raw_Shift_K = first(mean_K) - bg_stats$K,
|
|
|
+ Raw_Shift_r = first(mean_r) - bg_stats$r,
|
|
|
+ Raw_Shift_AUC = first(mean_AUC) - bg_stats$AUC,
|
|
|
+ Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
|
|
|
+ Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
|
|
|
+ Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
|
|
|
+ Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
|
|
|
Exp_L = WT_L + Raw_Shift_L,
|
|
|
Exp_K = WT_K + Raw_Shift_K,
|
|
|
Exp_r = WT_r + Raw_Shift_r,
|
|
@@ -1070,18 +1062,31 @@ main <- function() {
|
|
|
write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
|
|
|
# df_na_filtered_stats <- process_data(df_na_stats, c("L"), filter_nf = TRUE)
|
|
|
|
|
|
- # Pull the background means and standard deviations from zero concentration
|
|
|
+ # Create background (WT) data columns
|
|
|
+ df_na_stats <- df_na_stats %>%
|
|
|
+ mutate(
|
|
|
+ WT_L = mean_L,
|
|
|
+ WT_K = mean_K,
|
|
|
+ WT_r = mean_r,
|
|
|
+ WT_AUC = mean_AUC,
|
|
|
+ WT_sd_L = sd_L,
|
|
|
+ WT_sd_K = sd_K,
|
|
|
+ WT_sd_r = sd_r,
|
|
|
+ WT_sd_AUC = sd_AUC
|
|
|
+ )
|
|
|
+
|
|
|
+ # Pull the background means and standard deviations from zero concentration for interactions
|
|
|
bg_stats <- df_na_stats %>%
|
|
|
filter(conc_num == 0) %>%
|
|
|
summarise(
|
|
|
- WT_L = first(mean_L),
|
|
|
- WT_K = first(mean_K),
|
|
|
- WT_r = first(mean_r),
|
|
|
- WT_AUC = first(mean_AUC),
|
|
|
- WT_sd_L = first(sd_L),
|
|
|
- WT_sd_K = first(sd_K),
|
|
|
- WT_sd_r = first(sd_r),
|
|
|
- WT_sd_AUC = first(sd_AUC)
|
|
|
+ L = first(mean_L),
|
|
|
+ K = first(mean_K),
|
|
|
+ r = first(mean_r),
|
|
|
+ AUC = first(mean_AUC),
|
|
|
+ sd_L = first(sd_L),
|
|
|
+ sd_K = first(sd_K),
|
|
|
+ sd_r = first(sd_r),
|
|
|
+ sd_AUC = first(sd_AUC)
|
|
|
)
|
|
|
|
|
|
message("Calculating summary statistics after quality control excluding zero values")
|