瀏覽代碼

Generate correlation lms separately

Bryan Roessler 7 月之前
父節點
當前提交
b0a41ac181
共有 1 個文件被更改,包括 261 次插入225 次删除
  1. 261 225
      qhtcp-workflow/apps/r/calculate_interaction_zscores.R

+ 261 - 225
qhtcp-workflow/apps/r/calculate_interaction_zscores.R

@@ -184,7 +184,6 @@ update_gene_names <- function(df, sgd_gene_list) {
 }
 
 calculate_summary_stats <- function(df, variables, group_vars) {
-  
   summary_stats <- df %>%
     group_by(across(all_of(group_vars))) %>%
     summarise(
@@ -212,12 +211,12 @@ calculate_summary_stats <- function(df, variables, group_vars) {
   return(list(summary_stats = summary_stats, df_with_stats = df_joined))
 }
 
-calculate_interaction_scores <- function(df, max_conc, bg_stats,
-  group_vars = c("OrfRep", "Gene", "num")) {
-
+calculate_interaction_scores <- function(df, max_conc, bg_stats, group_vars, overlap_threshold = 2) {
+  
   # Calculate total concentration variables
   total_conc_num <- length(unique(df$conc_num))
-
+  
+  # Initial calculations
   calculations <- df %>%
     group_by(across(all_of(group_vars))) %>%
     mutate(
@@ -225,20 +224,24 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats,
       DB = sum(DB, na.rm = TRUE),
       SM = sum(SM, na.rm = TRUE),
       num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
-
+      
       # Calculate raw data
       Raw_Shift_L = first(mean_L) - bg_stats$mean_L,
       Raw_Shift_K = first(mean_K) - bg_stats$mean_K,
       Raw_Shift_r = first(mean_r) - bg_stats$mean_r,
       Raw_Shift_AUC = first(mean_AUC) - bg_stats$mean_AUC,
-      Z_Shift_L = first(Raw_Shift_L) / bg_stats$sd_L,
-      Z_Shift_K = first(Raw_Shift_K) / bg_stats$sd_K,
-      Z_Shift_r = first(Raw_Shift_r) / bg_stats$sd_r,
-      Z_Shift_AUC = first(Raw_Shift_AUC) / bg_stats$sd_AUC,
+      Z_Shift_L = Raw_Shift_L / bg_stats$sd_L,
+      Z_Shift_K = Raw_Shift_K / bg_stats$sd_K,
+      Z_Shift_r = Raw_Shift_r / bg_stats$sd_r,
+      Z_Shift_AUC = Raw_Shift_AUC / bg_stats$sd_AUC,
+      
+      # Expected values
       Exp_L = WT_L + Raw_Shift_L,
       Exp_K = WT_K + Raw_Shift_K,
       Exp_r = WT_r + Raw_Shift_r,
       Exp_AUC = WT_AUC + Raw_Shift_AUC,
+      
+      # Deltas
       Delta_L = mean_L - Exp_L,
       Delta_K = mean_K - Exp_K,
       Delta_r = mean_r - Exp_r,
@@ -248,19 +251,24 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats,
       Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
       Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
       Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
-
+      
       # Calculate Z-scores
       Zscore_L = Delta_L / WT_sd_L,
       Zscore_K = Delta_K / WT_sd_K,
       Zscore_r = Delta_r / WT_sd_r,
-      Zscore_AUC = Delta_AUC / WT_sd_AUC,
-
-      # Fit linear models and store in list-columns
-      gene_lm_L = list(lm(Delta_L ~ conc_num_factor, data = pick(everything()))),
-      gene_lm_K = list(lm(Delta_K ~ conc_num_factor, data = pick(everything()))),
-      gene_lm_r = list(lm(Delta_r ~ conc_num_factor, data = pick(everything()))),
-      gene_lm_AUC = list(lm(Delta_AUC ~ conc_num_factor, data = pick(everything()))),
-
+      Zscore_AUC = Delta_AUC / WT_sd_AUC
+    )
+  
+  # Fit linear models per group
+  lm_results <- calculations %>%
+    nest() %>%
+    mutate(
+      # Fit linear models
+      gene_lm_L = map(data, ~ lm(Delta_L ~ conc_num_factor, data = .x)),
+      gene_lm_K = map(data, ~ lm(Delta_K ~ conc_num_factor, data = .x)),
+      gene_lm_r = map(data, ~ lm(Delta_r ~ conc_num_factor, data = .x)),
+      gene_lm_AUC = map(data, ~ lm(Delta_AUC ~ conc_num_factor, data = .x)),
+      
       # Extract coefficients using purrr::map_dbl
       lm_intercept_L = map_dbl(gene_lm_L, ~ coef(.x)[1]),
       lm_slope_L = map_dbl(gene_lm_L, ~ coef(.x)[2]),
@@ -270,129 +278,152 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats,
       lm_slope_r = map_dbl(gene_lm_r, ~ coef(.x)[2]),
       lm_intercept_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[1]),
       lm_slope_AUC = map_dbl(gene_lm_AUC, ~ coef(.x)[2]),
-
+      
+      # Calculate R-squared values for Delta_ models
+      R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
+      R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
+      R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
+      R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared),
+      
       # Calculate lm_Score_* based on coefficients
       lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
       lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
       lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
-      lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC,
-
-      # Calculate R-squared values
-      R_Squared_L = map_dbl(gene_lm_L, ~ summary(.x)$r.squared),
-      R_Squared_K = map_dbl(gene_lm_K, ~ summary(.x)$r.squared),
-      R_Squared_r = map_dbl(gene_lm_r, ~ summary(.x)$r.squared),
-      R_Squared_AUC = map_dbl(gene_lm_AUC, ~ summary(.x)$r.squared)
+      lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
     ) %>%
+    select(-data, -starts_with("gene_lm_")) %>%
     ungroup()
-
+  
+  # Merge lm_results back into calculations
+  calculations <- calculations %>%
+    left_join(lm_results, by = group_vars)
+  
   # Calculate overall mean and SD for lm_Score_* variables
-  lm_means_sds <- calculations %>%
+  gene_lm_means <- lm_results %>%
     summarise(
-      lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
-      lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
-      lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
-      lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
-      lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
-      lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
-      lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
-      lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
+      L = mean(lm_Score_L, na.rm = TRUE),
+      K = mean(lm_Score_K, na.rm = TRUE),
+      r = mean(lm_Score_r, na.rm = TRUE),
+      AUC = mean(lm_Score_AUC, na.rm = TRUE)
     )
-
+  
+  gene_lm_sds <- lm_results %>%
+    summarise(
+      L = sd(lm_Score_L, na.rm = TRUE),
+      K = sd(lm_Score_K, na.rm = TRUE),
+      r = sd(lm_Score_r, na.rm = TRUE),
+      AUC = sd(lm_Score_AUC, na.rm = TRUE)
+    )
+  
+  # Calculate gene Z-scores
   calculations <- calculations %>%
     mutate(
-      Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
-      Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
-      Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
-      Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
+      Z_lm_L = (lm_Score_L - gene_lm_means$L) / gene_lm_sds$L,
+      Z_lm_K = (lm_Score_K - gene_lm_means$K) / gene_lm_sds$K,
+      Z_lm_r = (lm_Score_r - gene_lm_means$r) / gene_lm_sds$r,
+      Z_lm_AUC = (lm_Score_AUC - gene_lm_means$AUC) / gene_lm_sds$AUC
     )
-
-  # Summarize some of the stats
+  
+  # Build summary stats (interactions)
   interactions <- calculations %>%
     group_by(across(all_of(group_vars))) %>%
-    mutate(
-      # Calculate raw shifts
+    summarise(
+      # Calculate average Z-scores
+      Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
+      Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
+      Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
+      Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
+      
+      # Interaction Z-scores
+      Z_lm_L = first(Z_lm_L),
+      Z_lm_K = first(Z_lm_K),
+      Z_lm_r = first(Z_lm_r),
+      Z_lm_AUC = first(Z_lm_AUC),
+      
+      # Raw Shifts
       Raw_Shift_L = first(Raw_Shift_L),
       Raw_Shift_K = first(Raw_Shift_K),
       Raw_Shift_r = first(Raw_Shift_r),
       Raw_Shift_AUC = first(Raw_Shift_AUC),
-
-      # Calculate Z-shifts
+      
+      # Z Shifts
       Z_Shift_L = first(Z_Shift_L),
       Z_Shift_K = first(Z_Shift_K),
       Z_Shift_r = first(Z_Shift_r),
       Z_Shift_AUC = first(Z_Shift_AUC),
-
-      # Sum Z-scores
-      Sum_Z_Score_L = sum(Zscore_L),
-      Sum_Z_Score_K = sum(Zscore_K),
-      Sum_Z_Score_r = sum(Zscore_r),
-      Sum_Z_Score_AUC = sum(Zscore_AUC),
-
-      # Calculate Average Z-scores
-      Avg_Zscore_L = Sum_Z_Score_L / num_non_removed_concs,
-      Avg_Zscore_K = Sum_Z_Score_K / num_non_removed_concs,
-      Avg_Zscore_r = Sum_Z_Score_r / (total_conc_num - 1),
-      Avg_Zscore_AUC = Sum_Z_Score_AUC / (total_conc_num - 1)
+      
+      # Include NG, DB, SM
+      NG = first(NG),
+      DB = first(DB),
+      SM = first(SM)
     ) %>%
     arrange(desc(Z_lm_L), desc(NG)) %>%
     ungroup()
-
-  # Declare column order for output
-  calculations <- calculations %>%
-    select(
-      "OrfRep", "Gene", "num", "N",
-      "conc_num", "conc_num_factor", "conc_num_factor_factor",
-      "mean_L", "mean_K", "mean_r", "mean_AUC",
-      "median_L", "median_K", "median_r", "median_AUC",
-      "sd_L", "sd_K", "sd_r", "sd_AUC",
-      "se_L", "se_K", "se_r", "se_AUC",
-      "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
-      "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
-      "WT_L", "WT_K", "WT_r", "WT_AUC",
-      "WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
-      "Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
-      "Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
-      "Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
-      "NG", "SM", "DB"
-    )
-
+  
+  # Calculate overlap
   interactions <- interactions %>%
-    select(
-      "OrfRep", "Gene", "num", "NG", "DB", "SM",
-      "conc_num", "conc_num_factor", "conc_num_factor_factor",
-      "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
-      "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
-      "Sum_Z_Score_L", "Sum_Z_Score_K", "Sum_Z_Score_r", "Sum_Z_Score_AUC",
-      "Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
-      "lm_Score_L", "lm_Score_K", "lm_Score_r", "lm_Score_AUC",
-      "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
-      "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
+    mutate(
+      Overlap = case_when(
+        Z_lm_L >= overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Both",
+        Z_lm_L <= -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Both",
+        Z_lm_L >= overlap_threshold & Avg_Zscore_L < overlap_threshold ~ "Deletion Enhancer lm only",
+        Z_lm_L < overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Enhancer Avg Zscore only",
+        Z_lm_L <= -overlap_threshold & Avg_Zscore_L > -overlap_threshold ~ "Deletion Suppressor lm only",
+        Z_lm_L > -overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Suppressor Avg Zscore only",
+        Z_lm_L >= overlap_threshold & Avg_Zscore_L <= -overlap_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
+        Z_lm_L <= -overlap_threshold & Avg_Zscore_L >= overlap_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
+        TRUE ~ "No Effect"
+      )
     )
-
-  # Clean the original dataframe by removing overlapping columns
-  cleaned_df <- df %>%
-    select(-any_of(
-      setdiff(intersect(names(df), names(calculations)),
-      c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
-
-  # Join the original dataframe with calculations
-  df_with_calculations <- left_join(cleaned_df, calculations,
-    by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
-
-  # Remove overlapping columns between df_with_calculations and interactions
-  df_with_calculations_clean <- df_with_calculations %>%
-    select(-any_of(
-      setdiff(intersect(names(df_with_calculations), names(interactions)),
-      c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))))
-
-  # Join with interactions to create the full dataset
-  full_data <- left_join(df_with_calculations_clean, interactions,
-    by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
-
+  
+  # Fit correlation models between Z_lm_* and Avg_Zscore_* (same-variable)
+  correlation_lms_same <- list(
+    L = lm(Z_lm_L ~ Avg_Zscore_L, data = interactions),
+    K = lm(Z_lm_K ~ Avg_Zscore_K, data = interactions),
+    r = lm(Z_lm_r ~ Avg_Zscore_r, data = interactions),
+    AUC = lm(Z_lm_AUC ~ Avg_Zscore_AUC, data = interactions)
+  )
+  
+  # Extract correlation statistics for same-variable correlations
+  correlation_stats_same <- map(correlation_lms_same, ~ {
+    list(
+      intercept = coef(.x)[1],
+      slope = coef(.x)[2],
+      r_squared = summary(.x)$r.squared
+    )
+  })
+  
+  # Fit additional correlation models between different Z_lm_* variables
+  correlation_lms_diff <- list(
+    L_vs_K = lm(Z_lm_K ~ Z_lm_L, data = interactions),
+    L_vs_r = lm(Z_lm_r ~ Z_lm_L, data = interactions),
+    L_vs_AUC = lm(Z_lm_AUC ~ Z_lm_L, data = interactions),
+    K_vs_r = lm(Z_lm_r ~ Z_lm_K, data = interactions),
+    K_vs_AUC = lm(Z_lm_AUC ~ Z_lm_K, data = interactions),
+    r_vs_AUC = lm(Z_lm_AUC ~ Z_lm_r, data = interactions)
+  )
+  
+  # Extract correlation statistics for different-variable correlations
+  correlation_stats_diff <- map(correlation_lms_diff, ~ {
+    list(
+      intercept = coef(.x)[1],
+      slope = coef(.x)[2],
+      r_squared = summary(.x)$r.squared
+    )
+  })
+  
+  # Combine all correlation stats
+  correlation_stats <- c(correlation_stats_same, correlation_stats_diff)
+  
+  # Prepare full_data by merging interactions back into calculations
+  full_data <- calculations %>%
+    left_join(interactions, by = group_vars)
+  
   return(list(
     calculations = calculations,
     interactions = interactions,
-    full_data = full_data
+    full_data = full_data,
+    correlation_stats = correlation_stats
   ))
 }
 
@@ -577,32 +608,11 @@ generate_scatter_plot <- function(plot, config) {
   # Add error bars if specified
   if (!is.null(config$error_bar) && config$error_bar && !is.null(config$y_var)) {
     if (!is.null(config$error_bar_params)) {
-      # Error bar params are constants, so set them outside aes
-      plot <- plot +
-        geom_errorbar(
-          aes(
-            ymin = !!sym(config$y_var),   # y_var mapped to y-axis
-            ymax = !!sym(config$y_var)
-          ),
-          ymin = config$error_bar_params$ymin,  # Constant values
-          ymax = config$error_bar_params$ymax,  # Constant values
-          alpha = 0.3,
-          linewidth = 0.5
-        )
+      plot <- plot + geom_errorbar(aes(ymin = config$error_bar_params$ymin, ymax = config$error_bar_params$ymax))
     } else {
-      # Dynamically generate ymin and ymax based on column names
       y_mean_col <- paste0("mean_", config$y_var)
       y_sd_col <- paste0("sd_", config$y_var)
-      
-      plot <- plot +
-        geom_errorbar(
-          aes(
-            ymin = !!sym(y_mean_col) - !!sym(y_sd_col),  # Calculating ymin in aes
-            ymax = !!sym(y_mean_col) + !!sym(y_sd_col)   # Calculating ymax in aes
-          ),
-          alpha = 0.3,
-          linewidth = 0.5
-        )
+      plot <- plot + geom_errorbar(aes(ymin = !!sym(y_mean_col) - !!sym(y_sd_col), ymax = !!sym(y_mean_col) + !!sym(y_sd_col)))
     }
   }
 
@@ -711,7 +721,18 @@ generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df
   return(list(plots = plot_configs))
 }
 
-generate_interaction_plot_configs <- function(df, plot_type = "reference") {
+generate_interaction_plot_configs <- function(df, type) {
+
+  if (type == "reference") {
+    group_vars <- c("OrfRep", "Gene", "num")
+    df <- df %>%
+      mutate(OrfRepCombined = do.call(paste, c(across(all_of(group_vars)), sep = "_")))
+  } else if (type == "deletion") {
+    group_vars <- c("OrfRep", "Gene")
+    df <- df %>%
+      mutate(OrfRepCombined = OrfRep)
+  }
+
   limits_map <- list(
     L = c(0, 130),
     K = c(-20, 160),
@@ -720,47 +741,50 @@ generate_interaction_plot_configs <- function(df, plot_type = "reference") {
   )
 
   delta_limits_map <- list(
-    Delta_L = c(-60, 60),
-    Delta_K = c(-60, 60),
-    Delta_r = c(-0.6, 0.6),
-    Delta_AUC = c(-6000, 6000)
+    L = c(-60, 60),
+    K = c(-60, 60),
+    r = c(-0.6, 0.6),
+    AUC = c(-6000, 6000)
   )
 
-  group_vars <- if (plot_type == "reference") c("OrfRep", "Gene", "num") else c("OrfRep", "Gene")
-  
-  df_filtered <- df %>%
-    mutate(OrfRepCombined = if (plot_type == "reference") paste(OrfRep, Gene, num, sep = "_") else paste(OrfRep, Gene, sep = "_"))
-
   overall_plot_configs <- list()
   delta_plot_configs <- list()
 
-  # Overall plots
+  # Overall plots with lm_line for each interaction
   for (var in names(limits_map)) {
     y_limits <- limits_map[[var]]
+    
+    # Use the pre-calculated lm intercept and slope from the dataframe
+    lm_intercept_col <- paste0("lm_intercept_", var)
+    lm_slope_col <- paste0("lm_slope_", var)
 
     plot_config <- list(
-      df = df_filtered,
+      df = df,
       plot_type = "scatter",
       x_var = "conc_num_factor_factor",
       y_var = var,
-      x_label = unique(df_filtered$Drug)[1],
+      x_label = unique(df$Drug)[1],
       title = sprintf("Scatter RF for %s with SD", var),
       coord_cartesian = y_limits,
       error_bar = TRUE,
-      x_breaks = unique(df_filtered$conc_num_factor_factor),
-      x_labels = as.character(unique(df_filtered$conc_num)),
+      x_breaks = unique(df$conc_num_factor_factor),
+      x_labels = as.character(unique(df$conc_num)),
       position = "jitter",
-      smooth = TRUE
+      smooth = TRUE,
+      lm_line = list(
+        intercept = mean(df[[lm_intercept_col]], na.rm = TRUE),
+        slope = mean(df[[lm_slope_col]], na.rm = TRUE)
+      )
     )
     overall_plot_configs <- append(overall_plot_configs, list(plot_config))
   }
 
-  # Delta plots
-  unique_groups <- df_filtered %>% select(all_of(group_vars)) %>% distinct()
+  # Delta plots (add lm_line if necessary)
+  unique_groups <- df %>% select(all_of(group_vars)) %>% distinct()
 
   for (i in seq_len(nrow(unique_groups))) {
     group <- unique_groups[i, ]
-    group_data <- df_filtered %>% semi_join(group, by = group_vars)
+    group_data <- df %>% semi_join(group, by = group_vars)
 
     OrfRep <- as.character(group$OrfRep)
     Gene <- if ("Gene" %in% names(group)) as.character(group$Gene) else ""
@@ -770,13 +794,12 @@ generate_interaction_plot_configs <- function(df, plot_type = "reference") {
       y_limits <- delta_limits_map[[var]]
       y_span <- y_limits[2] - y_limits[1]
 
-      WT_sd_var <- paste0("WT_sd_", sub("Delta_", "", var))
-      WT_sd_value <- group_data[[WT_sd_var]][1]
-      error_bar_ymin <- 0 - (2 * WT_sd_value)
-      error_bar_ymax <- 0 + (2 * WT_sd_value)
+      # For error bars
+      WT_sd_value <- group_data[[paste0("WT_sd_", var)]][1]
 
-      Z_Shift_value <- round(group_data[[paste0("Z_Shift_", sub("Delta_", "", var))]][1], 2)
-      Z_lm_value <- round(group_data[[paste0("Z_lm_", sub("Delta_", "", var))]][1], 2)
+      Z_Shift_value <- round(group_data[[paste0("Z_Shift_", var)]][1], 2)
+      Z_lm_value <- round(group_data[[paste0("Z_lm_", var)]][1], 2)
+      R_squared_value <- round(group_data[[paste0("R_squared_", var)]][1], 2)
       NG_value <- group_data$NG[1]
       DB_value <- group_data$DB[1]
       SM_value <- group_data$SM[1]
@@ -784,37 +807,48 @@ generate_interaction_plot_configs <- function(df, plot_type = "reference") {
       annotations <- list(
         list(x = 1, y = y_limits[2] - 0.2 * y_span, label = paste("ZShift =", Z_Shift_value)),
         list(x = 1, y = y_limits[2] - 0.3 * y_span, label = paste("lm ZScore =", Z_lm_value)),
+        list(x = 1, y = y_limits[2] - 0.4 * y_span, label = paste("R-squared =", R_squared_value)),
         list(x = 1, y = y_limits[1] + 0.2 * y_span, label = paste("NG =", NG_value)),
         list(x = 1, y = y_limits[1] + 0.1 * y_span, label = paste("DB =", DB_value)),
         list(x = 1, y = y_limits[1], label = paste("SM =", SM_value))
       )
 
+      # Delta plot configuration with lm_line if needed
       plot_config <- list(
         df = group_data,
         plot_type = "scatter",
         x_var = "conc_num_factor_factor",
         y_var = var,
         x_label = unique(group_data$Drug)[1],
-        title = paste(OrfRep, Gene, sep = "      "),
+        title = paste(OrfRepCombined, Gene, sep = "      "),
         coord_cartesian = y_limits,
         annotations = annotations,
         error_bar = TRUE,
         error_bar_params = list(
-          ymin = error_bar_ymin,
-          ymax = error_bar_ymax
+          ymin = 0 - (2 * WT_sd_value),
+          ymax = 0 + (2 * WT_sd_value)
         ),
         smooth = TRUE,
         x_breaks = unique(group_data$conc_num_factor_factor),
         x_labels = as.character(unique(group_data$conc_num)),
-        ylim_vals = y_limits
+        ylim_vals = y_limits,
+        lm_line = list(
+          intercept = group_data[[lm_intercept_col]][1],
+          slope = group_data[[lm_slope_col]][1]
+        )
       )
       delta_plot_configs <- append(delta_plot_configs, list(plot_config))
     }
   }
 
+  # Calculate dynamic grid layout based on the number of plots for the delta_L plots
+  grid_ncol <- 4
+  num_plots <- length(delta_plot_configs)
+  grid_nrow <- ceiling(num_plots / grid_ncol)
+
   return(list(
     list(grid_layout = list(ncol = 2, nrow = 2), plots = overall_plot_configs),
-    list(grid_layout = list(ncol = 4, nrow = 3), plots = delta_plot_configs)
+    list(grid_layout = list(ncol = 4, nrow = grid_nrow), plots = delta_plot_configs)
   ))
 }
 
@@ -902,44 +936,66 @@ generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FA
   return(list(grid_layout = list(ncol = grid_ncol, nrow = grid_nrow), plots = plot_configs))
 }
 
-generate_correlation_plot_configs <- function(df, highlight_cyan = FALSE) {
+generate_correlation_plot_configs <- function(df, correlation_stats) {
+  # Define relationships for different-variable correlations
   relationships <- list(
-    list(x = "Z_lm_L", y = "Z_lm_K", label = "Interaction L vs. Interaction K"),
-    list(x = "Z_lm_L", y = "Z_lm_r", label = "Interaction L vs. Interaction r"),
-    list(x = "Z_lm_L", y = "Z_lm_AUC", label = "Interaction L vs. Interaction AUC"),
-    list(x = "Z_lm_K", y = "Z_lm_r", label = "Interaction K vs. Interaction r"),
-    list(x = "Z_lm_K", y = "Z_lm_AUC", label = "Interaction K vs. Interaction AUC"),
-    list(x = "Z_lm_r", y = "Z_lm_AUC", label = "Interaction r vs. Interaction AUC")
+    list(x = "L", y = "K"),
+    list(x = "L", y = "r"),
+    list(x = "L", y = "AUC"),
+    list(x = "K", y = "r"),
+    list(x = "K", y = "AUC"),
+    list(x = "r", y = "AUC")
   )
 
   plot_configs <- list()
 
-  for (rel in relationships) {
-    lm_model <- lm(as.formula(paste(rel$y, "~", rel$x)), data = df)
-    r_squared <- summary(lm_model)$r.squared
+  # Iterate over the option to highlight cyan points (TRUE/FALSE)
+  highlight_cyan_options <- c(FALSE, TRUE)
 
-    plot_config <- list(
-      df = df,
-      x_var = rel$x,
-      y_var = rel$y,
-      plot_type = "scatter",
-      title = rel$label,
-      annotations = list(
-        list(
-          x = mean(df[[rel$x]], na.rm = TRUE),
-          y = mean(df[[rel$y]], na.rm = TRUE),
-          label = paste("R-squared =", round(r_squared, 3)))
-      ),
-      smooth = TRUE,
-      smooth_color = "tomato3",
-      lm_line = list(intercept = coef(lm_model)[1], slope = coef(lm_model)[2]),
-      shape = 3,
-      size = 0.5,
-      color_var = "Overlap",
-      cyan_points = highlight_cyan
-    )
+  for (highlight_cyan in highlight_cyan_options) {
+    for (rel in relationships) {
+      # Extract relevant variable names for Z_lm values
+      x_var <- paste0("Z_lm_", rel$x)
+      y_var <- paste0("Z_lm_", rel$y)
+
+      # Access the correlation statistics from the correlation_stats list
+      relationship_name <- paste0(rel$x, "_vs_", rel$y)  # Example: L_vs_K
+      stats <- correlation_stats[[relationship_name]]
+      intercept <- stats$intercept
+      slope <- stats$slope
+      r_squared <- stats$r_squared
 
-    plot_configs <- append(plot_configs, list(plot_config))
+      # Generate the label for the plot
+      plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
+
+      # Construct plot config
+      plot_config <- list(
+        df = df,
+        x_var = x_var,
+        y_var = y_var,
+        plot_type = "scatter",
+        title = plot_label,
+        annotations = list(
+          list(
+            x = mean(df[[x_var]], na.rm = TRUE),
+            y = mean(df[[y_var]], na.rm = TRUE),
+            label = paste("R-squared =", round(r_squared, 3))
+          )
+        ),
+        smooth = TRUE,
+        smooth_color = "tomato3",
+        lm_line = list(
+          intercept = intercept,
+          slope = slope
+        ),
+        shape = 3,
+        size = 0.5,
+        color_var = "Overlap",
+        cyan_points = highlight_cyan  # Include cyan points or not based on the loop
+      )
+
+      plot_configs <- append(plot_configs, list(plot_config))
+    }
   }
 
   return(list(plots = plot_configs))
@@ -1041,7 +1097,7 @@ main <- function() {
       file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
       row.names = FALSE)
     
-    # Each plots list corresponds to a file
+    # Each list of plots corresponds to a file
     l_vs_k_plot_configs <- list(
       plots = list(
         list(
@@ -1147,7 +1203,7 @@ main <- function() {
           plot_type = "scatter",
           title = "Raw L vs K for strains falling outside 2SD of the K mean at each Conc",
           color_var = "conc_num_factor_factor",
-          position = "jitter",  # Apply jitter for better visibility
+          position = "jitter",
           tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
           annotations = list(
             list(
@@ -1171,7 +1227,7 @@ main <- function() {
           plot_type = "scatter",
           title = "Delta Background vs K for strains falling outside 2SD of the K mean at each Conc",
           color_var = "conc_num_factor_factor",
-          position = "jitter",  # Apply jitter for better visibility
+          position = "jitter",
           tooltip_vars = c("OrfRep", "Gene", "delta_bg"),
           annotations = list(
             list(
@@ -1187,7 +1243,7 @@ main <- function() {
     )
 
     message("Generating quality control plots in parallel")
-    # # future::plan(future::multicore, workers = parallel::detectCores())
+    # future::plan(future::multicore, workers = parallel::detectCores())
     future::plan(future::multisession, workers = 3) # generate 3 plots in parallel
 
     plot_configs <- list(
@@ -1298,11 +1354,11 @@ main <- function() {
 
       # Create interaction plots
       message("Generating reference interaction plots")
-      reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, plot_type = "reference")
+      reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined, "reference")
       generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
 
       message("Generating deletion interaction plots")
-      deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, plot_type = "deletion")
+      deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined, "deletion")
       generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
 
       # Define conditions for enhancers and suppressors
@@ -1372,29 +1428,6 @@ main <- function() {
       generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
         plot_configs = rank_lm_plot_configs)
 
-      message("Filtering and reranking plots")
-      interaction_threshold <- 2 # TODO add to study config?
-      # Formerly X_NArm
-      zscore_interactions_filtered <- zscore_interactions_joined %>%
-        filter(!is.na(Z_lm_L) & !is.na(Avg_Zscore_L)) %>%
-        mutate(
-          Overlap = case_when(
-            Z_lm_L >= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Both",
-            Z_lm_L <= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Both",
-            Z_lm_L >= interaction_threshold & Avg_Zscore_L <= interaction_threshold ~ "Deletion Enhancer lm only",
-            Z_lm_L <= interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Enhancer Avg Zscore only",
-            Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= -interaction_threshold ~ "Deletion Suppressor lm only",
-            Z_lm_L >= -interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Suppressor Avg Zscore only",
-            Z_lm_L >= interaction_threshold & Avg_Zscore_L <= -interaction_threshold ~ "Deletion Enhancer lm, Deletion Suppressor Avg Z score",
-            Z_lm_L <= -interaction_threshold & Avg_Zscore_L >= interaction_threshold ~ "Deletion Suppressor lm, Deletion Enhancer Avg Z score",
-            TRUE ~ "No Effect"
-          ),
-          lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
-          lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
-          lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
-          lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared
-        )
-
       message("Generating filtered ranked plots")
       rank_plot_filtered_configs <- generate_rank_plot_configs(
         df = zscore_interactions_filtered,
@@ -1430,3 +1463,6 @@ main <- function() {
   })
 }
 main()
+
+# For future simplification of joined dataframes
+# df_joined <- left_join(cleaned_df, summary_stats, by = group_vars, suffix = c("_original", "_stats"))