|
@@ -525,36 +525,17 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
|
|
config <- group$plots[[i]]
|
|
|
df <- config$df
|
|
|
|
|
|
- # Filter and debug out-of-bounds data
|
|
|
- if (!is.null(config$ylim_vals)) {
|
|
|
- out_of_bounds <- df %>%
|
|
|
- filter(
|
|
|
- is.na(.data[[config$y_var]]) |
|
|
|
- .data[[config$y_var]] < config$ylim_vals[1] |
|
|
|
- .data[[config$y_var]] > config$ylim_vals[2]
|
|
|
- )
|
|
|
- if (nrow(out_of_bounds) > 0) {
|
|
|
- message("Filtered ", nrow(out_of_bounds), " row(s) from '", config$title, "' because ", config$y_var,
|
|
|
- " is outside of y-limits: [", config$ylim_vals[1], ", ", config$ylim_vals[2], "]:")
|
|
|
- # print(out_of_bounds %>% select(OrfRep, Gene, num, Drug, scan, Plate, Row, Col, conc_num, all_of(config$y_var)), width = 1000)
|
|
|
- }
|
|
|
- df <- df %>%
|
|
|
- filter(
|
|
|
- !is.na(.data[[config$y_var]]) &
|
|
|
- .data[[config$y_var]] >= config$ylim_vals[1] &
|
|
|
- .data[[config$y_var]] <= config$ylim_vals[2]
|
|
|
- )
|
|
|
- }
|
|
|
-
|
|
|
# Filter NAs
|
|
|
if (!is.null(config$filter_na) && config$filter_na) {
|
|
|
df <- df %>%
|
|
|
filter(!is.na(.data[[config$y_var]]))
|
|
|
}
|
|
|
|
|
|
+ # TODO for now skip all NA plots NA data
|
|
|
+ # Eventually add to own or filter_na block so we can handle selectively
|
|
|
if (nrow(df) == 0) {
|
|
|
- message("No data available after filtering for plot ", config$title)
|
|
|
- next # Skip this plot if no data is available
|
|
|
+ message("Insufficient data for plot:", config$title)
|
|
|
+ next # skip plot if insufficient data is available
|
|
|
}
|
|
|
|
|
|
aes_mapping <- if (config$plot_type == "bar") {
|
|
@@ -599,10 +580,10 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
|
|
if (!is.null(config$y_label)) plot <- plot + ylab(config$y_label)
|
|
|
if (!is.null(config$coord_cartesian)) plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
|
|
|
|
|
|
- plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
|
|
|
+ #plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
|
|
|
|
|
|
static_plots[[i]] <- plot
|
|
|
- plotly_plots[[i]] <- plotly_plot
|
|
|
+ #plotly_plots[[i]] <- plotly_plot
|
|
|
}
|
|
|
|
|
|
grid_layout <- group$grid_layout
|
|
@@ -624,16 +605,11 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
|
|
static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
|
|
|
}
|
|
|
|
|
|
- tryCatch({
|
|
|
- grid.arrange(
|
|
|
- grobs = static_plots,
|
|
|
- ncol = grid_layout$ncol,
|
|
|
- nrow = grid_layout$nrow
|
|
|
- )
|
|
|
- }, error = function(e) {
|
|
|
- message("Error in grid.arrange: ", e$message)
|
|
|
- print(static_plots)
|
|
|
- })
|
|
|
+ grid.arrange(
|
|
|
+ grobs = static_plots,
|
|
|
+ ncol = grid_layout$ncol,
|
|
|
+ nrow = grid_layout$nrow
|
|
|
+ )
|
|
|
|
|
|
} else {
|
|
|
for (plot in static_plots) {
|
|
@@ -644,15 +620,14 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
|
|
|
|
|
dev.off()
|
|
|
|
|
|
- out_html_file <- file.path(out_dir, paste0(filename, ".html"))
|
|
|
- message("Saving combined HTML file: ", out_html_file)
|
|
|
- htmltools::save_html(
|
|
|
- htmltools::tagList(plotly_plots),
|
|
|
- file = out_html_file
|
|
|
- )
|
|
|
+ # out_html_file <- file.path(out_dir, paste0(filename, ".html"))
|
|
|
+ # message("Saving combined HTML file: ", out_html_file)
|
|
|
+ # htmltools::save_html(
|
|
|
+ # htmltools::tagList(plotly_plots),
|
|
|
+ # file = out_html_file
|
|
|
+ # )
|
|
|
}
|
|
|
|
|
|
-
|
|
|
generate_scatter_plot <- function(plot, config) {
|
|
|
|
|
|
# Define the points
|
|
@@ -790,7 +765,7 @@ generate_scatter_plot <- function(plot, config) {
|
|
|
)
|
|
|
}
|
|
|
} else {
|
|
|
- message("Skipping linear modeling line due to y-values outside of limits.")
|
|
|
+ message("Skipping linear regression line due to y-values outside of limits")
|
|
|
}
|
|
|
} else {
|
|
|
# If no y-limits are provided, proceed with the annotation
|
|
@@ -805,7 +780,7 @@ generate_scatter_plot <- function(plot, config) {
|
|
|
)
|
|
|
}
|
|
|
} else {
|
|
|
- message("Skipping linear modeling line due to missing or invalid values.")
|
|
|
+ message("Skipping linear regression line due to missing or invalid values")
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -984,7 +959,6 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
|
|
)
|
|
|
plot_config$position <- "jitter"
|
|
|
|
|
|
- # Cannot figure out how to place these properly for discrete x-axis so let's be hacky
|
|
|
annotations <- list(
|
|
|
list(x = 0.25, y = y_limits[1] + 0.08 * y_span, label = " NG =", size = 4),
|
|
|
list(x = 0.25, y = y_limits[1] + 0.04 * y_span, label = " DB =", size = 4),
|
|
@@ -1045,26 +1019,50 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
|
|
for (var in names(delta_limits_map)) {
|
|
|
y_limits <- delta_limits_map[[var]]
|
|
|
y_span <- y_limits[2] - y_limits[1]
|
|
|
+ y_var_name <- paste0("Delta_", var)
|
|
|
|
|
|
- WT_sd_value <- first(group_data[[paste0("WT_sd_", var)]], default = 0)
|
|
|
- Z_Shift_value <- round(first(group_data[[paste0("Z_Shift_", var)]], default = 0), 2)
|
|
|
- Z_lm_value <- round(first(group_data[[paste0("Z_lm_", var)]], default = 0), 2)
|
|
|
- R_squared_value <- round(first(group_data[[paste0("R_Squared_", var)]], default = 0), 2)
|
|
|
+ # Anti-filter to select out-of-bounds rows
|
|
|
+ out_of_bounds <- group_data %>%
|
|
|
+ filter(is.na(.data[[y_var_name]]) |
|
|
|
+ .data[[y_var_name]] < y_limits[1] |
|
|
|
+ .data[[y_var_name]] > y_limits[2])
|
|
|
+
|
|
|
+ if (nrow(out_of_bounds) > 0) {
|
|
|
+ message(sprintf("Filtered %d row(s) from '%s' because %s is outside of y-limits: [%f, %f]",
|
|
|
+ nrow(out_of_bounds), OrfRepTitle, y_var_name, y_limits[1], y_limits[2]
|
|
|
+ ))
|
|
|
+ }
|
|
|
|
|
|
- NG_value <- first(group_data$NG, default = 0)
|
|
|
- DB_value <- first(group_data$DB, default = 0)
|
|
|
- SM_value <- first(group_data$SM, default = 0)
|
|
|
+ # Do the actual filtering
|
|
|
+ group_data_filtered <- group_data %>%
|
|
|
+ filter(!is.na(.data[[y_var_name]]) &
|
|
|
+ .data[[y_var_name]] >= y_limits[1] &
|
|
|
+ .data[[y_var_name]] <= y_limits[2])
|
|
|
|
|
|
+ if (nrow(group_data_filtered) == 0) {
|
|
|
+ message("Insufficient data for plot: ", OrfRepTitle, " ", var)
|
|
|
+ next # skip plot if insufficient data is available
|
|
|
+ }
|
|
|
+
|
|
|
+ WT_sd_value <- first(group_data_filtered[[paste0("WT_sd_", var)]], default = 0)
|
|
|
+ Z_Shift_value <- round(first(group_data_filtered[[paste0("Z_Shift_", var)]], default = 0), 2)
|
|
|
+ Z_lm_value <- round(first(group_data_filtered[[paste0("Z_lm_", var)]], default = 0), 2)
|
|
|
+ R_squared_value <- round(first(group_data_filtered[[paste0("R_Squared_", var)]], default = 0), 2)
|
|
|
+
|
|
|
+ NG_value <- first(group_data_filtered$NG, default = 0)
|
|
|
+ DB_value <- first(group_data_filtered$DB, default = 0)
|
|
|
+ SM_value <- first(group_data_filtered$SM, default = 0)
|
|
|
+
|
|
|
lm_intercept_col <- paste0("lm_intercept_", var)
|
|
|
lm_slope_col <- paste0("lm_slope_", var)
|
|
|
- lm_intercept_value <- first(group_data[[lm_intercept_col]], default = 0)
|
|
|
- lm_slope_value <- first(group_data[[lm_slope_col]], default = 0)
|
|
|
-
|
|
|
+ lm_intercept_value <- first(group_data_filtered[[lm_intercept_col]], default = 0)
|
|
|
+ lm_slope_value <- first(group_data_filtered[[lm_slope_col]], default = 0)
|
|
|
+
|
|
|
plot_config <- list(
|
|
|
- df = group_data,
|
|
|
+ df = group_data_filtered,
|
|
|
plot_type = "scatter",
|
|
|
x_var = "conc_num_factor_factor",
|
|
|
- y_var = paste0("Delta_", var),
|
|
|
+ y_var = y_var_name,
|
|
|
x_label = paste0("[", unique(df_summary$Drug)[1], "]"),
|
|
|
shape = 16,
|
|
|
title = paste(OrfRepTitle, Gene, sep = " "),
|
|
@@ -1087,27 +1085,26 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
|
|
color = "gray70",
|
|
|
linewidth = 0.5
|
|
|
),
|
|
|
- x_breaks = unique(group_data$conc_num_factor_factor),
|
|
|
- x_labels = as.character(unique(group_data$conc_num)),
|
|
|
+ x_breaks = unique(group_data_filtered$conc_num_factor_factor),
|
|
|
+ x_labels = as.character(unique(group_data_filtered$conc_num)),
|
|
|
ylim_vals = y_limits,
|
|
|
- # filter_na = TRUE,
|
|
|
lm_line = list(
|
|
|
intercept = lm_intercept_value,
|
|
|
slope = lm_slope_value,
|
|
|
color = "blue",
|
|
|
linewidth = 0.8,
|
|
|
- x_min = min(as.numeric(group_data$conc_num_factor_factor)),
|
|
|
- x_max = max(as.numeric(group_data$conc_num_factor_factor))
|
|
|
+ x_min = min(as.numeric(group_data_filtered$conc_num_factor_factor)),
|
|
|
+ x_max = max(as.numeric(group_data_filtered$conc_num_factor_factor))
|
|
|
)
|
|
|
)
|
|
|
delta_plot_configs <- append(delta_plot_configs, list(plot_config))
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
# Group delta plots in chunks of 12 per page
|
|
|
chunk_size <- 12
|
|
|
delta_plot_chunks <- split(delta_plot_configs, ceiling(seq_along(delta_plot_configs) / chunk_size))
|
|
|
-
|
|
|
+
|
|
|
return(c(
|
|
|
list(list(grid_layout = list(ncol = 2), plots = stats_plot_configs)),
|
|
|
list(list(grid_layout = list(ncol = 2), plots = stats_boxplot_configs)),
|
|
@@ -1587,16 +1584,16 @@ main <- function() {
|
|
|
group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
|
|
|
)$df_with_stats
|
|
|
|
|
|
- # message("Calculating reference strain interaction scores")
|
|
|
- # reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
|
|
|
- # df_reference_interactions_joined <- reference_results$full_data
|
|
|
- # df_reference_interactions <- reference_results$interactions
|
|
|
- # write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
|
|
|
- # write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
|
|
|
-
|
|
|
- # message("Generating reference interaction plots")
|
|
|
- # reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
|
|
|
- # generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
|
|
|
+ message("Calculating reference strain interaction scores")
|
|
|
+ reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
|
|
|
+ df_reference_interactions_joined <- reference_results$full_data
|
|
|
+ df_reference_interactions <- reference_results$interactions
|
|
|
+ write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
|
|
|
+ write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
|
|
|
+
|
|
|
+ message("Generating reference interaction plots")
|
|
|
+ reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
|
|
|
+ generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
|
|
|
|
|
|
message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
|
|
|
df_deletion <- df_na_stats %>% # formerly X2
|