|
@@ -1,11 +1,12 @@
|
|
suppressMessages({
|
|
suppressMessages({
|
|
- library(ggplot2)
|
|
|
|
- library(plotly)
|
|
|
|
- library(htmlwidgets)
|
|
|
|
- library(dplyr)
|
|
|
|
- library(ggthemes)
|
|
|
|
- library(data.table)
|
|
|
|
- library(unix)
|
|
|
|
|
|
+ library("ggplot2")
|
|
|
|
+ library("plotly")
|
|
|
|
+ library("htmlwidgets")
|
|
|
|
+ library("dplyr")
|
|
|
|
+ library("rlang")
|
|
|
|
+ library("ggthemes")
|
|
|
|
+ library("data.table")
|
|
|
|
+ library("unix")
|
|
})
|
|
})
|
|
|
|
|
|
options(warn = 2)
|
|
options(warn = 2)
|
|
@@ -568,13 +569,9 @@ generate_box_plot <- function(plot, config) {
|
|
}
|
|
}
|
|
|
|
|
|
generate_interaction_plot_configs <- function(df, variables) {
|
|
generate_interaction_plot_configs <- function(df, variables) {
|
|
|
|
+
|
|
configs <- list()
|
|
configs <- list()
|
|
-
|
|
|
|
- # Data frames to collect filtered data and out-of-range data
|
|
|
|
- filtered_data_list <- list()
|
|
|
|
- out_of_range_data_list <- list()
|
|
|
|
-
|
|
|
|
- # Define common y-limits for each variable
|
|
|
|
|
|
+
|
|
limits_map <- list(
|
|
limits_map <- list(
|
|
L = c(-65, 65),
|
|
L = c(-65, 65),
|
|
K = c(-65, 65),
|
|
K = c(-65, 65),
|
|
@@ -596,44 +593,22 @@ generate_interaction_plot_configs <- function(df, variables) {
|
|
DB = function(df, var) paste("DB =", df$DB),
|
|
DB = function(df, var) paste("DB =", df$DB),
|
|
SM = function(df, var) paste("SM =", df$SM)
|
|
SM = function(df, var) paste("SM =", df$SM)
|
|
)
|
|
)
|
|
|
|
+
|
|
|
|
+ results <- filter_data_for_plots(df, variables, limits_map)
|
|
|
|
+ df_filtered <- results$df_filtered
|
|
|
|
+ lm_lines <- filtered_results$lm_lines
|
|
|
|
|
|
|
|
+ # Iterate over each variable to create plot configurations
|
|
for (variable in variables) {
|
|
for (variable in variables) {
|
|
- # Get y-limits for the variable
|
|
|
|
- ylim_vals <- limits_map[[variable]]
|
|
|
|
-
|
|
|
|
- # Extract precomputed linear model coefficients
|
|
|
|
- lm_line <- list(
|
|
|
|
- intercept = df[[paste0("lm_intercept_", variable)]],
|
|
|
|
- slope = df[[paste0("lm_slope_", variable)]]
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
- # Filter the data based on y-limits and missing values
|
|
|
|
- y_var_sym <- sym(variable)
|
|
|
|
- x_var_sym <- sym("conc_num_factor")
|
|
|
|
-
|
|
|
|
- # Identify missing data and out-of-range data
|
|
|
|
- missing_data <- df %>% filter(is.na(!!x_var_sym) | is.na(!!y_var_sym))
|
|
|
|
- out_of_range_data <- df %>% filter(
|
|
|
|
- !is.na(!!y_var_sym) &
|
|
|
|
- (!!y_var_sym < min(ylim_vals, na.rm = TRUE) | !!y_var_sym > max(ylim_vals, na.rm = TRUE))
|
|
|
|
- )
|
|
|
|
-
|
|
|
|
- # Combine missing data and out-of-range data
|
|
|
|
- data_to_filter_out <- bind_rows(missing_data, out_of_range_data) %>% distinct()
|
|
|
|
-
|
|
|
|
- # Filtered data for plotting
|
|
|
|
- filtered_data <- df %>% anti_join(data_to_filter_out, by = names(df))
|
|
|
|
-
|
|
|
|
- # Collect the filtered data and out-of-range data
|
|
|
|
- filtered_data_list[[variable]] <- filtered_data
|
|
|
|
- out_of_range_data_list[[variable]] <- data_to_filter_out
|
|
|
|
|
|
|
|
# Calculate x and y positions for annotations based on filtered data
|
|
# Calculate x and y positions for annotations based on filtered data
|
|
- x_levels <- levels(filtered_data$conc_num_factor)
|
|
|
|
- x_pos <- mean(seq_along(x_levels)) # Midpoint of x-axis
|
|
|
|
-
|
|
|
|
- y_min <- min(ylim_vals)
|
|
|
|
- y_max <- max(ylim_vals)
|
|
|
|
|
|
+ x_levels <- levels(df_filtered$conc_num_factor)
|
|
|
|
+ num_levels <- length(x_levels)
|
|
|
|
+ x_pos <- (1 + num_levels) / 2 # Midpoint of x-axis positions
|
|
|
|
+
|
|
|
|
+ y_range <- limits_map[[variable]]
|
|
|
|
+ y_min <- min(y_range)
|
|
|
|
+ y_max <- max(y_range)
|
|
y_span <- y_max - y_min
|
|
y_span <- y_max - y_min
|
|
|
|
|
|
# Adjust y positions as fractions of y-span
|
|
# Adjust y positions as fractions of y-span
|
|
@@ -650,7 +625,7 @@ generate_interaction_plot_configs <- function(df, variables) {
|
|
y_pos <- annotation_positions[[annotation_name]]
|
|
y_pos <- annotation_positions[[annotation_name]]
|
|
label_func <- annotation_labels[[annotation_name]]
|
|
label_func <- annotation_labels[[annotation_name]]
|
|
if (!is.null(label_func)) {
|
|
if (!is.null(label_func)) {
|
|
- label <- label_func(df, variable)
|
|
|
|
|
|
+ label <- label_func(df_filtered, variable)
|
|
list(x = x_pos, y = y_pos, label = label)
|
|
list(x = x_pos, y = y_pos, label = label)
|
|
} else {
|
|
} else {
|
|
message(paste("Warning: No annotation function found for", annotation_name))
|
|
message(paste("Warning: No annotation function found for", annotation_name))
|
|
@@ -663,48 +638,40 @@ generate_interaction_plot_configs <- function(df, variables) {
|
|
|
|
|
|
# Create scatter plot config
|
|
# Create scatter plot config
|
|
configs[[length(configs) + 1]] <- list(
|
|
configs[[length(configs) + 1]] <- list(
|
|
- df = filtered_data,
|
|
|
|
|
|
+ df = df_filtered,
|
|
x_var = "conc_num_factor",
|
|
x_var = "conc_num_factor",
|
|
y_var = variable,
|
|
y_var = variable,
|
|
plot_type = "scatter",
|
|
plot_type = "scatter",
|
|
- title = sprintf("%s %s", df$OrfRep[1], df$Gene[1]),
|
|
|
|
- ylim_vals = ylim_vals,
|
|
|
|
|
|
+ title = sprintf("%s %s", df_filtered$OrfRep[1], df_filteredGene[1]),
|
|
|
|
+ ylim_vals = y_range,
|
|
annotations = annotations,
|
|
annotations = annotations,
|
|
- lm_line = lm_line,
|
|
|
|
|
|
+ lm_line = lm_lines[[variable]],
|
|
error_bar = TRUE,
|
|
error_bar = TRUE,
|
|
- x_breaks = levels(filtered_data$conc_num_factor),
|
|
|
|
- x_labels = levels(filtered_data$conc_num_factor),
|
|
|
|
|
|
+ x_breaks = levels(df_filtered$conc_num_factor),
|
|
|
|
+ x_labels = levels(df_filtered$conc_num_factor),
|
|
x_label = unique(df$Drug[1]),
|
|
x_label = unique(df$Drug[1]),
|
|
position = "jitter",
|
|
position = "jitter",
|
|
- coord_cartesian = ylim_vals # Use the actual y-limits
|
|
|
|
|
|
+ coord_cartesian = y_range # Use the actual y-limits
|
|
)
|
|
)
|
|
|
|
|
|
# Create box plot config
|
|
# Create box plot config
|
|
configs[[length(configs) + 1]] <- list(
|
|
configs[[length(configs) + 1]] <- list(
|
|
- df = filtered_data,
|
|
|
|
|
|
+ df = df_filtered,
|
|
x_var = "conc_num_factor",
|
|
x_var = "conc_num_factor",
|
|
y_var = variable,
|
|
y_var = variable,
|
|
plot_type = "box",
|
|
plot_type = "box",
|
|
- title = sprintf("%s %s (Boxplot)", df$OrfRep[1], df$Gene[1]),
|
|
|
|
- ylim_vals = ylim_vals,
|
|
|
|
|
|
+ title = sprintf("%s %s (Boxplot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
|
|
|
|
+ ylim_vals = y_range,
|
|
annotations = annotations,
|
|
annotations = annotations,
|
|
error_bar = FALSE,
|
|
error_bar = FALSE,
|
|
- x_breaks = unique(filtered_data$conc_num_factor),
|
|
|
|
- x_labels = unique(as.character(filtered_data$conc_num)),
|
|
|
|
- x_label = unique(df$Drug[1]),
|
|
|
|
- coord_cartesian = ylim_vals
|
|
|
|
|
|
+ x_breaks = levels(df_filtered$conc_num_factor),
|
|
|
|
+ x_labels = levels(df_filtered$conc_num_factor),
|
|
|
|
+ x_label = unique(df_filtered$Drug[1]),
|
|
|
|
+ coord_cartesian = y_range
|
|
)
|
|
)
|
|
}
|
|
}
|
|
|
|
|
|
- # Combine the filtered data and out-of-range data into data frames
|
|
|
|
- filtered_data_df <- bind_rows(filtered_data_list, .id = "variable")
|
|
|
|
- out_of_range_data_df <- bind_rows(out_of_range_data_list, .id = "variable")
|
|
|
|
-
|
|
|
|
- return(list(
|
|
|
|
- configs = configs,
|
|
|
|
- filtered_data = filtered_data_df,
|
|
|
|
- out_of_range_data = out_of_range_data_df
|
|
|
|
- ))
|
|
|
|
|
|
+ return(configs)
|
|
}
|
|
}
|
|
|
|
|
|
generate_rank_plot_configs <- function(df, interaction_vars, rank_vars = c("L", "K"), is_lm = FALSE, adjust = FALSE) {
|
|
generate_rank_plot_configs <- function(df, interaction_vars, rank_vars = c("L", "K"), is_lm = FALSE, adjust = FALSE) {
|
|
@@ -822,6 +789,54 @@ filter_and_print_non_finite <- function(df, vars_to_check, print_vars) {
|
|
df %>% filter(if_all(all_of(vars_to_check), is.finite))
|
|
df %>% filter(if_all(all_of(vars_to_check), is.finite))
|
|
}
|
|
}
|
|
|
|
|
|
|
|
+filter_data_for_plots <- function(df, variables, limits_map) {
|
|
|
|
+
|
|
|
|
+ # Initialize lists to store lm lines and filtered data
|
|
|
|
+ lm_lines <- list()
|
|
|
|
+
|
|
|
|
+ # Print out NA and out-of-range data separately
|
|
|
|
+ for (variable in variables) {
|
|
|
|
+ # Get y-limits for the variable
|
|
|
|
+ ylim_vals <- limits_map[[variable]]
|
|
|
|
+
|
|
|
|
+ # Extract precomputed linear model coefficients
|
|
|
|
+ lm_lines[[variable]] <- list(
|
|
|
|
+ intercept = df[[paste0("lm_intercept_", variable)]],
|
|
|
|
+ slope = df[[paste0("lm_slope_", variable)]]
|
|
|
|
+ )
|
|
|
|
+
|
|
|
|
+ # Convert variable name to symbol for dplyr
|
|
|
|
+ y_var_sym <- sym(variable)
|
|
|
|
+
|
|
|
|
+ # Identify missing data and print it
|
|
|
|
+ missing_data <- df %>% filter(is.na(!!y_var_sym))
|
|
|
|
+ if (nrow(missing_data) > 0) {
|
|
|
|
+ message("Missing data for variable ", variable, ":")
|
|
|
|
+ print(missing_data)
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ # Identify out-of-range data and print it
|
|
|
|
+ out_of_range_data <- df %>% filter(
|
|
|
|
+ !is.na(!!y_var_sym) &
|
|
|
|
+ (!!y_var_sym < min(ylim_vals, na.rm = TRUE) | !!y_var_sym > max(ylim_vals, na.rm = TRUE))
|
|
|
|
+ )
|
|
|
|
+ if (nrow(out_of_range_data) > 0) {
|
|
|
|
+ message("Out-of-range data for variable ", variable, ":")
|
|
|
|
+ print(out_of_range_data)
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ # Perform all filtering at once for all variables
|
|
|
|
+ df_filtered <- df %>% filter(across(all_of(variables), ~ !is.na(.))) %>%
|
|
|
|
+ filter(across(all_of(variables), ~ between(., limits_map[[cur_column()]][1], limits_map[[cur_column()]][2]), .names = "filter_{col}"))
|
|
|
|
+
|
|
|
|
+ # Return the filtered dataframe and lm lines
|
|
|
|
+ return(list(
|
|
|
|
+ df_filtered = df_filtered,
|
|
|
|
+ lm_lines = lm_lines
|
|
|
|
+ ))
|
|
|
|
+}
|
|
|
|
+
|
|
main <- function() {
|
|
main <- function() {
|
|
lapply(names(args$experiments), function(exp_name) {
|
|
lapply(names(args$experiments), function(exp_name) {
|
|
exp <- args$experiments[[exp_name]]
|
|
exp <- args$experiments[[exp_name]]
|
|
@@ -1151,22 +1166,11 @@ main <- function() {
|
|
|
|
|
|
# Create interaction plots
|
|
# Create interaction plots
|
|
message("Generating reference interaction plots")
|
|
message("Generating reference interaction plots")
|
|
- results <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
|
|
|
|
- if (nrow(results$out_of_range_data) > 0) {
|
|
|
|
- message("Out-of-range data:")
|
|
|
|
- print(results$out_of_range_data %>% select("OrfRep", "Gene", "num",
|
|
|
|
- "conc_num", "conc_num_factor", config$x_var, config$y_var))
|
|
|
|
- }
|
|
|
|
- reference_plot_configs <- results$configs
|
|
|
|
|
|
+ reference_plot_configs <- generate_interaction_plot_configs(zscores_interactions_reference_joined, interaction_vars)
|
|
generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
|
|
generate_and_save_plots(out_dir, "RF_interactionPlots", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
|
|
|
|
|
|
message("Generating deletion interaction plots")
|
|
message("Generating deletion interaction plots")
|
|
- results <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
|
|
|
|
- if (nrow(results$out_of_range_data) > 0) {
|
|
|
|
- message("Out-of-range data:")
|
|
|
|
- print(results$out_of_range_data)
|
|
|
|
- }
|
|
|
|
- deletion_plot_configs <- results$configs
|
|
|
|
|
|
+ deletion_plot_configs <- generate_interaction_plot_configs(zscores_interactions_joined, interaction_vars)
|
|
generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
|
|
generate_and_save_plots(out_dir, "InteractionPlots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
|
|
|
|
|
|
# Define conditions for enhancers and suppressors
|
|
# Define conditions for enhancers and suppressors
|
|
@@ -1253,10 +1257,10 @@ main <- function() {
|
|
ungroup() %>%
|
|
ungroup() %>%
|
|
rowwise() %>%
|
|
rowwise() %>%
|
|
mutate(
|
|
mutate(
|
|
- lm_R_squared_L = summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared,
|
|
|
|
- lm_R_squared_K = summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared,
|
|
|
|
- lm_R_squared_r = summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared,
|
|
|
|
- lm_R_squared_AUC = summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared,
|
|
|
|
|
|
+ lm_R_squared_L = if (n() > 1) summary(lm(Z_lm_L ~ Avg_Zscore_L))$r.squared else NA,
|
|
|
|
+ lm_R_squared_K = if (n() > 1) summary(lm(Z_lm_K ~ Avg_Zscore_K))$r.squared else NA,
|
|
|
|
+ lm_R_squared_r = if (n() > 1) summary(lm(Z_lm_r ~ Avg_Zscore_r))$r.squared else NA,
|
|
|
|
+ lm_R_squared_AUC = if (n() > 1) summary(lm(Z_lm_AUC ~ Avg_Zscore_AUC))$r.squared else NA,
|
|
|
|
|
|
Overlap = case_when(
|
|
Overlap = case_when(
|
|
Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
|
|
Z_lm_L >= 2 & Avg_Zscore_L >= 2 ~ "Deletion Enhancer Both",
|