|
@@ -6,6 +6,7 @@ suppressMessages({
|
|
|
library("rlang")
|
|
|
library("ggthemes")
|
|
|
library("data.table")
|
|
|
+ library("gridExtra")
|
|
|
library("future")
|
|
|
library("furrr")
|
|
|
library("purrr")
|
|
@@ -371,124 +372,128 @@ calculate_interaction_scores <- function(df, max_conc, bg_stats,
|
|
|
interactions_joined = interactions_joined))
|
|
|
}
|
|
|
|
|
|
-generate_and_save_plots <- function(out_dir, filename, plot_configs, grid_layout = NULL) {
|
|
|
+generate_and_save_plots <- function(out_dir, filename, plot_configs) {
|
|
|
message("Generating ", filename, ".pdf and ", filename, ".html")
|
|
|
|
|
|
- # Prepare lists to collect plots
|
|
|
- static_plots <- list()
|
|
|
- plotly_plots <- list()
|
|
|
-
|
|
|
- for (i in seq_along(plot_configs)) {
|
|
|
- config <- plot_configs[[i]]
|
|
|
- df <- config$df
|
|
|
-
|
|
|
- # Create the base plot
|
|
|
- aes_mapping <- if (config$plot_type == "bar") {
|
|
|
- if (!is.null(config$color_var)) {
|
|
|
- aes(x = .data[[config$x_var]], fill = as.factor(.data[[config$color_var]]), color = as.factor(.data[[config$color_var]]))
|
|
|
- } else {
|
|
|
- aes(x = .data[[config$x_var]])
|
|
|
- }
|
|
|
- } else if (config$plot_type == "density") {
|
|
|
- if (!is.null(config$color_var)) {
|
|
|
- aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
|
|
|
- } else {
|
|
|
- aes(x = .data[[config$x_var]])
|
|
|
- }
|
|
|
- } else {
|
|
|
- if (!is.null(config$color_var)) {
|
|
|
- aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
|
|
|
+ # Iterate through the plot_configs (which contain both plots and grid_layout)
|
|
|
+ for (config_group in plot_configs) {
|
|
|
+ plot_list <- config_group$plots
|
|
|
+ grid_nrow <- config_group$grid_layout$nrow
|
|
|
+ grid_ncol <- config_group$grid_layout$ncol
|
|
|
+
|
|
|
+ # Prepare lists to collect static and interactive plots
|
|
|
+ static_plots <- list()
|
|
|
+ plotly_plots <- list()
|
|
|
+
|
|
|
+ # Generate each individual plot based on the configuration
|
|
|
+ for (i in seq_along(plot_list)) {
|
|
|
+ config <- plot_list[[i]]
|
|
|
+ df <- config$df
|
|
|
+
|
|
|
+ # Create the base plot
|
|
|
+ aes_mapping <- if (config$plot_type == "bar") {
|
|
|
+ if (!is.null(config$color_var)) {
|
|
|
+ aes(x = .data[[config$x_var]], fill = as.factor(.data[[config$color_var]]), color = as.factor(.data[[config$color_var]]))
|
|
|
+ } else {
|
|
|
+ aes(x = .data[[config$x_var]])
|
|
|
+ }
|
|
|
+ } else if (config$plot_type == "density") {
|
|
|
+ if (!is.null(config$color_var)) {
|
|
|
+ aes(x = .data[[config$x_var]], color = as.factor(.data[[config$color_var]]))
|
|
|
+ } else {
|
|
|
+ aes(x = .data[[config$x_var]])
|
|
|
+ }
|
|
|
} else {
|
|
|
- aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
|
|
|
+ if (!is.null(config$color_var)) {
|
|
|
+ aes(x = .data[[config$x_var]], y = .data[[config$y_var]], color = as.factor(.data[[config$color_var]]))
|
|
|
+ } else {
|
|
|
+ aes(x = .data[[config$x_var]], y = .data[[config$y_var]])
|
|
|
+ }
|
|
|
}
|
|
|
- }
|
|
|
|
|
|
- plot <- ggplot(df, aes_mapping)
|
|
|
+ plot <- ggplot(df, aes_mapping)
|
|
|
|
|
|
- # Apply theme_publication with legend_position from config
|
|
|
- legend_position <- if (!is.null(config$legend_position)) config$legend_position else "bottom"
|
|
|
- plot <- plot + theme_publication(legend_position = legend_position)
|
|
|
+ # Apply theme_publication with legend_position from config
|
|
|
+ legend_position <- if (!is.null(config$legend_position)) config$legend_position else "bottom"
|
|
|
+ plot <- plot + theme_publication(legend_position = legend_position)
|
|
|
|
|
|
- # Use appropriate helper function based on plot type
|
|
|
- plot <- switch(config$plot_type,
|
|
|
- "scatter" = generate_scatter_plot(plot, config),
|
|
|
- "box" = generate_box_plot(plot, config),
|
|
|
- "density" = plot + geom_density(),
|
|
|
- "bar" = plot + geom_bar(),
|
|
|
- plot # default case if no type matches
|
|
|
- )
|
|
|
+ # Use appropriate helper function based on plot type
|
|
|
+ plot <- switch(config$plot_type,
|
|
|
+ "scatter" = generate_scatter_plot(plot, config),
|
|
|
+ "box" = generate_box_plot(plot, config),
|
|
|
+ "density" = plot + geom_density(),
|
|
|
+ "bar" = plot + geom_bar(),
|
|
|
+ plot # default case if no type matches
|
|
|
+ )
|
|
|
|
|
|
- # Add title and labels
|
|
|
- if (!is.null(config$title)) {
|
|
|
- plot <- plot + ggtitle(config$title)
|
|
|
- }
|
|
|
- if (!is.null(config$x_label)) {
|
|
|
- plot <- plot + xlab(config$x_label)
|
|
|
- }
|
|
|
- if (!is.null(config$y_label)) {
|
|
|
- plot <- plot + ylab(config$y_label)
|
|
|
- }
|
|
|
+ # Add title and labels
|
|
|
+ if (!is.null(config$title)) {
|
|
|
+ plot <- plot + ggtitle(config$title)
|
|
|
+ }
|
|
|
+ if (!is.null(config$x_label)) {
|
|
|
+ plot <- plot + xlab(config$x_label)
|
|
|
+ }
|
|
|
+ if (!is.null(config$y_label)) {
|
|
|
+ plot <- plot + ylab(config$y_label)
|
|
|
+ }
|
|
|
|
|
|
- # Add cartesian coordinates if specified
|
|
|
- if (!is.null(config$coord_cartesian)) {
|
|
|
- plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
|
|
|
- }
|
|
|
+ # Add cartesian coordinates if specified
|
|
|
+ if (!is.null(config$coord_cartesian)) {
|
|
|
+ plot <- plot + coord_cartesian(ylim = config$coord_cartesian)
|
|
|
+ }
|
|
|
|
|
|
- # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
|
|
|
- if (is.null(config$color_var)) {
|
|
|
- plot <- plot + scale_color_discrete(guide = "none")
|
|
|
- }
|
|
|
+ # Apply scale_color_discrete(guide = FALSE) when color_var is NULL
|
|
|
+ if (is.null(config$color_var)) {
|
|
|
+ plot <- plot + scale_color_discrete(guide = "none")
|
|
|
+ }
|
|
|
|
|
|
- # Add interactive tooltips for plotly
|
|
|
- tooltip_vars <- c()
|
|
|
- if (config$plot_type == "scatter") {
|
|
|
- if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
|
|
|
- tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
|
|
|
- } else if (!is.null(config$gene_point) && config$gene_point) {
|
|
|
- tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
|
|
|
- } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
|
|
|
- tooltip_vars <- c(config$x_var, config$y_var)
|
|
|
+ # Add interactive tooltips for plotly
|
|
|
+ tooltip_vars <- c()
|
|
|
+ if (config$plot_type == "scatter") {
|
|
|
+ if (!is.null(config$delta_bg_point) && config$delta_bg_point) {
|
|
|
+ tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene", "delta_bg")
|
|
|
+ } else if (!is.null(config$gene_point) && config$gene_point) {
|
|
|
+ tooltip_vars <- c(tooltip_vars, "OrfRep", "Gene")
|
|
|
+ } else if (!is.null(config$y_var) && !is.null(config$x_var)) {
|
|
|
+ tooltip_vars <- c(config$x_var, config$y_var)
|
|
|
+ }
|
|
|
}
|
|
|
- }
|
|
|
|
|
|
- # Convert to plotly object and suppress warnings here
|
|
|
- plotly_plot <- suppressWarnings({
|
|
|
- if (length(tooltip_vars) > 0) {
|
|
|
- ggplotly(plot, tooltip = tooltip_vars)
|
|
|
- } else {
|
|
|
- ggplotly(plot, tooltip = "none")
|
|
|
+ # Convert to plotly object and suppress warnings here
|
|
|
+ plotly_plot <- suppressWarnings({
|
|
|
+ if (length(tooltip_vars) > 0) {
|
|
|
+ ggplotly(plot, tooltip = tooltip_vars)
|
|
|
+ } else {
|
|
|
+ ggplotly(plot, tooltip = "none")
|
|
|
+ }
|
|
|
+ })
|
|
|
+
|
|
|
+ # Adjust legend position if specified
|
|
|
+ if (!is.null(config$legend_position) && config$legend_position == "bottom") {
|
|
|
+ plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
|
|
|
}
|
|
|
- })
|
|
|
|
|
|
- # Adjust legend position if specified
|
|
|
- if (!is.null(config$legend_position) && config$legend_position == "bottom") {
|
|
|
- plotly_plot <- plotly_plot %>% layout(legend = list(orientation = "h"))
|
|
|
+ # Add plots to lists
|
|
|
+ static_plots[[i]] <- plot
|
|
|
+ plotly_plots[[i]] <- plotly_plot
|
|
|
}
|
|
|
|
|
|
- # Add plots to lists
|
|
|
- static_plots[[i]] <- plot
|
|
|
- plotly_plots[[i]] <- plotly_plot
|
|
|
- }
|
|
|
-
|
|
|
- # Save static PDF plot(s)
|
|
|
- pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 14, height = 9)
|
|
|
- lapply(static_plots, print)
|
|
|
- dev.off()
|
|
|
-
|
|
|
- # Combine and save interactive HTML plot(s)
|
|
|
- combined_plot <- subplot(
|
|
|
- plotly_plots,
|
|
|
- nrows = if (!is.null(grid_layout) && !is.null(grid_layout$nrow)) {
|
|
|
- grid_layout$nrow
|
|
|
- } else {
|
|
|
- # Calculate nrow based on the length of plotly_plots
|
|
|
- ceiling(length(plotly_plots) / ifelse(!is.null(grid_layout) && !is.null(grid_layout$ncol), grid_layout$ncol, 1))
|
|
|
- },
|
|
|
- margin = 0.05
|
|
|
- )
|
|
|
+ # Save static PDF plot(s) for the current grid
|
|
|
+ pdf(file.path(out_dir, paste0(filename, ".pdf")), width = 16, height = 9)
|
|
|
+ grid.arrange(grobs = static_plots, ncol = grid_ncol, nrow = grid_nrow)
|
|
|
+ dev.off()
|
|
|
+
|
|
|
+ # Combine and save interactive HTML plot(s)
|
|
|
+ combined_plot <- subplot(
|
|
|
+ plotly_plots,
|
|
|
+ nrows = grid_nrow,
|
|
|
+ ncols = grid_ncol,
|
|
|
+ margin = 0.05
|
|
|
+ )
|
|
|
|
|
|
- # Save combined html plot(s)
|
|
|
- saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
|
|
|
+ # Save combined HTML plot(s)
|
|
|
+ saveWidget(combined_plot, file = file.path(out_dir, paste0(filename, ".html")), selfcontained = TRUE)
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
generate_scatter_plot <- function(plot, config) {
|
|
@@ -686,102 +691,76 @@ generate_plate_analysis_plot_configs <- function(variables, stages = c("before",
|
|
|
return(plots)
|
|
|
}
|
|
|
|
|
|
-generate_interaction_plot_configs <- function(df, limits_map = NULL) {
|
|
|
- # Default limits_map if not provided
|
|
|
+generate_interaction_plot_configs <- function(df, limits_map = NULL, stats_df = NULL) {
|
|
|
if (is.null(limits_map)) {
|
|
|
limits_map <- list(
|
|
|
- L = c(-65, 65),
|
|
|
- K = c(-65, 65),
|
|
|
- r = c(-0.65, 0.65),
|
|
|
- AUC = c(-6500, 6500)
|
|
|
+ L = c(0, 130),
|
|
|
+ K = c(-20, 160),
|
|
|
+ r = c(0, 1),
|
|
|
+ AUC = c(0, 12500)
|
|
|
)
|
|
|
}
|
|
|
|
|
|
- # Filter data
|
|
|
- df_filtered <- df
|
|
|
- for (var in names(limits_map)) {
|
|
|
- df_filtered <- df_filtered %>%
|
|
|
- filter(!is.na(!!sym(var)) &
|
|
|
- !!sym(var) >= limits_map[[var]][1] &
|
|
|
- !!sym(var) <= limits_map[[var]][2])
|
|
|
- }
|
|
|
+ # Ensure proper grouping by OrfRep, Gene, and num
|
|
|
+ df_filtered <- df %>%
|
|
|
+ filter(
|
|
|
+ !is.na(L) & L >= limits_map$L[1] & L <= limits_map$L[2],
|
|
|
+ !is.na(K) & K >= limits_map$K[1] & K <= limits_map$K[2],
|
|
|
+ !is.na(r) & r >= limits_map$r[1] & r <= limits_map$r[2],
|
|
|
+ !is.na(AUC) & AUC >= limits_map$AUC[1] & AUC <= limits_map$AUC[2]
|
|
|
+ ) %>%
|
|
|
+ group_by(OrfRep, Gene, num) # Group by OrfRep, Gene, and num
|
|
|
|
|
|
- configs <- list()
|
|
|
+ scatter_configs <- list()
|
|
|
+ box_configs <- list()
|
|
|
|
|
|
+ # Generate scatter and box plots for each variable (L, K, r, AUC)
|
|
|
for (var in names(limits_map)) {
|
|
|
- y_range <- limits_map[[var]]
|
|
|
-
|
|
|
- # Calculate annotation positions
|
|
|
- y_min <- min(y_range)
|
|
|
- y_max <- max(y_range)
|
|
|
- y_span <- y_max - y_min
|
|
|
- annotation_positions <- list(
|
|
|
- ZShift = y_max - 0.1 * y_span,
|
|
|
- lm_ZScore = y_max - 0.2 * y_span,
|
|
|
- NG = y_min + 0.2 * y_span,
|
|
|
- DB = y_min + 0.1 * y_span,
|
|
|
- SM = y_min + 0.05 * y_span
|
|
|
- )
|
|
|
-
|
|
|
- # Prepare linear model line
|
|
|
- lm_line <- list(
|
|
|
- intercept = df_filtered[[paste0("lm_intercept_", var)]],
|
|
|
- slope = df_filtered[[paste0("lm_slope_", var)]]
|
|
|
- )
|
|
|
-
|
|
|
- # Calculate x-axis position for annotations
|
|
|
- num_levels <- length(levels(df_filtered$conc_num_factor))
|
|
|
- x_pos <- (1 + num_levels) / 2
|
|
|
-
|
|
|
- # Generate annotations
|
|
|
- annotations <- lapply(names(annotation_positions), function(annotation_name) {
|
|
|
- label <- switch(annotation_name,
|
|
|
- ZShift = paste("ZShift =", round(df_filtered[[paste0("Z_Shift_", var)]], 2)),
|
|
|
- lm_ZScore = paste("lm ZScore =", round(df_filtered[[paste0("Z_lm_", var)]], 2)),
|
|
|
- NG = paste("NG =", df_filtered$NG),
|
|
|
- DB = paste("DB =", df_filtered$DB),
|
|
|
- SM = paste("SM =", df_filtered$SM),
|
|
|
- NULL
|
|
|
- )
|
|
|
- if (!is.null(label)) {
|
|
|
- list(x = x_pos, y = annotation_positions[[annotation_name]], label = label)
|
|
|
- } else {
|
|
|
- NULL
|
|
|
- }
|
|
|
- })
|
|
|
- annotations <- Filter(Negate(is.null), annotations)
|
|
|
-
|
|
|
- # Shared plot settings
|
|
|
- plot_settings <- list(
|
|
|
+ scatter_configs[[length(scatter_configs) + 1]] <- list(
|
|
|
df = df_filtered,
|
|
|
- x_var = "conc_num_factor",
|
|
|
- y_var = var,
|
|
|
- ylim_vals = y_range,
|
|
|
- annotations = annotations,
|
|
|
- lm_line = lm_line,
|
|
|
- x_breaks = levels(df_filtered$conc_num_factor),
|
|
|
- x_labels = levels(df_filtered$conc_num_factor),
|
|
|
- x_label = unique(df_filtered$Drug[1]),
|
|
|
- coord_cartesian = y_range,
|
|
|
- )
|
|
|
-
|
|
|
- # Scatter plot config
|
|
|
- configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
|
|
|
+ x_var = "conc_num", # X-axis variable
|
|
|
+ y_var = var, # Y-axis variable (Delta_L, Delta_K, Delta_r, Delta_AUC)
|
|
|
plot_type = "scatter",
|
|
|
- title = sprintf("%s %s", df_filtered$OrfRep[1], df_filtered$Gene[1]),
|
|
|
- error_bar = TRUE,
|
|
|
- position = "jitter",
|
|
|
- size = 1
|
|
|
- ))
|
|
|
-
|
|
|
- # Box plot config
|
|
|
- configs[[length(configs) + 1]] <- modifyList(plot_settings, list(
|
|
|
+ title = sprintf("Scatter RF for %s with SD", var),
|
|
|
+ coord_cartesian = limits_map[[var]], # Set limits for Y-axis
|
|
|
+ annotations = list(
|
|
|
+ list(x = -0.25, y = 10, label = "NG"),
|
|
|
+ list(x = -0.25, y = 5, label = "DB"),
|
|
|
+ list(x = -0.25, y = 0, label = "SM")
|
|
|
+ ),
|
|
|
+ grid_layout = list(ncol = 4, nrow = 3)
|
|
|
+ )
|
|
|
+ box_configs[[length(box_configs) + 1]] <- list(
|
|
|
+ df = df_filtered,
|
|
|
+ x_var = "conc_num", # X-axis variable
|
|
|
+ y_var = var, # Y-axis variable (Delta_L, Delta_K, Delta_r, Delta_AUC)
|
|
|
plot_type = "box",
|
|
|
- title = sprintf("%s %s (box plot)", df_filtered$OrfRep[1], df_filtered$Gene[1]),
|
|
|
- error_bar = FALSE
|
|
|
- ))
|
|
|
+ title = sprintf("Boxplot RF for %s with SD", var),
|
|
|
+ coord_cartesian = limits_map[[var]],
|
|
|
+ grid_layout = list(ncol = 4, nrow = 3)
|
|
|
+ )
|
|
|
}
|
|
|
|
|
|
+ # Combine scatter and box plots into grids
|
|
|
+ configs <- list(
|
|
|
+ list(
|
|
|
+ grid_layout = list(nrow = 2, ncol = 2), # Scatter plots in a 2x2 grid (for the 8 plots)
|
|
|
+ plots = scatter_configs[1:4]
|
|
|
+ ),
|
|
|
+ list(
|
|
|
+ grid_layout = list(nrow = 2, ncol = 2), # Box plots in a 2x2 grid (for the 8 plots)
|
|
|
+ plots = box_configs
|
|
|
+ ),
|
|
|
+ list(
|
|
|
+ grid_layout = list(nrow = 3, ncol = 4), # Delta_ plots in a 3x4 grid
|
|
|
+ plots = scatter_configs
|
|
|
+ ),
|
|
|
+ list(
|
|
|
+ grid_layout = list(nrow = 3, ncol = 4), # Delta_ box plots in a 3x4 grid
|
|
|
+ plots = box_configs
|
|
|
+ )
|
|
|
+ )
|
|
|
+
|
|
|
return(configs)
|
|
|
}
|
|
|
|
|
@@ -864,7 +843,8 @@ generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FA
|
|
|
size = 0.1,
|
|
|
y_label = y_label,
|
|
|
x_label = "Rank",
|
|
|
- legend_position = "none"
|
|
|
+ legend_position = "none",
|
|
|
+ grid_layout = list(ncol = 3, nrow = 2)
|
|
|
)
|
|
|
|
|
|
# Non-Annotated Plot Configuration
|
|
@@ -884,7 +864,8 @@ generate_rank_plot_configs <- function(df, variables, is_lm = FALSE, adjust = FA
|
|
|
size = 0.1,
|
|
|
y_label = y_label,
|
|
|
x_label = "Rank",
|
|
|
- legend_position = "none"
|
|
|
+ legend_position = "none",
|
|
|
+ grid_layout = list(ncol = 3, nrow = 2)
|
|
|
)
|
|
|
}
|
|
|
}
|
|
@@ -1006,7 +987,8 @@ generate_correlation_plot_configs <- function(df) {
|
|
|
fill = NA, color = "grey20", alpha = 0.1
|
|
|
)
|
|
|
),
|
|
|
- cyan_points = TRUE
|
|
|
+ cyan_points = TRUE,
|
|
|
+ grid_layout = list(ncol = 2, nrow = 2)
|
|
|
)
|
|
|
|
|
|
configs[[length(configs) + 1]] <- config
|
|
@@ -1258,9 +1240,9 @@ main <- function() {
|
|
|
)
|
|
|
|
|
|
# Generating quality control plots in parallel
|
|
|
- furrr::future_map(plot_configs, function(config) {
|
|
|
- generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
|
|
|
- }, .options = furrr_options(seed = TRUE))
|
|
|
+ # furrr::future_map(plot_configs, function(config) {
|
|
|
+ # generate_and_save_plots(config$out_dir, config$filename, config$plot_configs)
|
|
|
+ # }, .options = furrr_options(seed = TRUE))
|
|
|
|
|
|
# Process background strains
|
|
|
bg_strains <- c("YDL227C")
|
|
@@ -1345,11 +1327,11 @@ main <- function() {
|
|
|
# Create interaction plots
|
|
|
message("Generating reference interaction plots")
|
|
|
reference_plot_configs <- generate_interaction_plot_configs(zscore_interactions_reference_joined)
|
|
|
- generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
|
|
|
+ generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs)
|
|
|
|
|
|
message("Generating deletion interaction plots")
|
|
|
deletion_plot_configs <- generate_interaction_plot_configs(zscore_interactions_joined)
|
|
|
- generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, grid_layout = list(ncol = 4, nrow = 3))
|
|
|
+ generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs)
|
|
|
|
|
|
# Define conditions for enhancers and suppressors
|
|
|
# TODO Add to study config?
|
|
@@ -1408,7 +1390,7 @@ main <- function() {
|
|
|
adjust = TRUE
|
|
|
)
|
|
|
generate_and_save_plots(out_dir = out_dir, filename = "rank_plots",
|
|
|
- plot_configs = rank_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
|
|
|
+ plot_configs = rank_plot_configs)
|
|
|
|
|
|
message("Generating ranked linear model plots")
|
|
|
rank_lm_plot_configs <- generate_rank_plot_configs(
|
|
@@ -1418,7 +1400,7 @@ main <- function() {
|
|
|
adjust = TRUE
|
|
|
)
|
|
|
generate_and_save_plots(out_dir = out_dir, filename = "rank_plots_lm",
|
|
|
- plot_configs = rank_lm_plot_configs, grid_layout = list(ncol = 3, nrow = 2))
|
|
|
+ plot_configs = rank_lm_plot_configs)
|
|
|
|
|
|
message("Filtering and reranking plots")
|
|
|
interaction_threshold <- 2 # TODO add to study config?
|
|
@@ -1454,8 +1436,7 @@ main <- function() {
|
|
|
generate_and_save_plots(
|
|
|
out_dir = out_dir,
|
|
|
filename = "RankPlots_na_rm",
|
|
|
- plot_configs = rank_plot_filtered_configs,
|
|
|
- grid_layout = list(ncol = 3, nrow = 2))
|
|
|
+ plot_configs = rank_plot_filtered_configs)
|
|
|
|
|
|
message("Generating filtered ranked linear model plots")
|
|
|
rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
|
|
@@ -1468,8 +1449,7 @@ main <- function() {
|
|
|
generate_and_save_plots(
|
|
|
out_dir = out_dir,
|
|
|
filename = "rank_plots_lm_na_rm",
|
|
|
- plot_configs = rank_plot_lm_filtered_configs,
|
|
|
- grid_layout = list(ncol = 3, nrow = 2))
|
|
|
+ plot_configs = rank_plot_lm_filtered_configs)
|
|
|
|
|
|
message("Generating correlation curve parameter pair plots")
|
|
|
correlation_plot_configs <- generate_correlation_plot_configs(zscore_interactions_filtered)
|
|
@@ -1477,7 +1457,7 @@ main <- function() {
|
|
|
out_dir = out_dir,
|
|
|
filename = "correlation_cpps",
|
|
|
plot_configs = correlation_plot_configs,
|
|
|
- grid_layout = list(ncol = 2, nrow = 2))
|
|
|
+ )
|
|
|
})
|
|
|
})
|
|
|
}
|