瀏覽代碼

Refactor calculate_interaction_scores again

Bryan Roessler 6 月之前
父節點
當前提交
f6958a0126
共有 1 個文件被更改,包括 107 次插入105 次删除
  1. 107 105
      qhtcp-workflow/apps/r/calculate_interaction_zscores.R

+ 107 - 105
qhtcp-workflow/apps/r/calculate_interaction_zscores.R

@@ -161,9 +161,8 @@ load_and_filter_data <- function(easy_results_file, sd = 3) {
     )
 
   # Set the max concentration across the whole dataframe
-  max_conc <- max(df$conc_num_factor, na.rm = TRUE)
   df <- df %>%
-    mutate(max_conc = max_conc)
+    mutate(max_conc = max(df$conc_num_factor, na.rm = TRUE))
 
   return(df)
 }
@@ -216,172 +215,183 @@ calculate_summary_stats <- function(df, variables, group_vars) {
   return(list(summary_stats = summary_stats, df_with_stats = df_joined))
 }
 
-calculate_interaction_scores <- function(df, bg_df, group_vars, overlap_threshold = 2) {
+calculate_interaction_scores <- function(df, df_bg, group_vars, max_conc, overlap_threshold = 2) {
 
-  bg_df_selected <- bg_df %>%
-    select(OrfRep, conc_num, conc_num_factor, conc_num_factor_factor,
-      mean_L, mean_K, mean_r, mean_AUC, sd_L, sd_K, sd_r, sd_AUC
+  # Include background statistics per concentration
+  bg_stats <- df_bg %>%
+    group_by(conc_num, conc_num_factor) %>%
+    summarise(
+      WT_L = first(mean_L),
+      WT_K = first(mean_K),
+      WT_r = first(mean_r),
+      WT_AUC = first(mean_AUC),
+      WT_sd_L = first(sd_L),
+      WT_sd_K = first(sd_K),
+      WT_sd_r = first(sd_r),
+      WT_sd_AUC = first(sd_AUC),
+      .groups = "drop"
     )
 
-  df <- df %>%
-    left_join(bg_df_selected, by = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"),
-      suffix = c("", "_bg"))
-
-  # Calculate total concentration variables
+  # Calculate total number of concentrations
   total_conc_num <- length(unique(df$conc_num))
-  
-  # Initial calculations
+
+  # Join background statistics to df
   calculations <- df %>%
+    left_join(bg_stats, by = c("conc_num", "conc_num_factor"))
+
+  # Perform calculations
+  calculations <- calculations %>%
     group_by(across(all_of(group_vars))) %>%
     mutate(
+      N = n(),
       NG = sum(NG, na.rm = TRUE),
       DB = sum(DB, na.rm = TRUE),
       SM = sum(SM, na.rm = TRUE),
-      num_non_removed_concs = total_conc_num - sum(DB, na.rm = TRUE) - 1,
-
-      # Assign WT values from the background data
-      WT_L = mean_L_bg,
-      WT_K = mean_K_bg,
-      WT_r = mean_r_bg,
-      WT_AUC = mean_AUC_bg,
-      WT_sd_L = sd_L_bg,
-      WT_sd_K = sd_K_bg,
-      WT_sd_r = sd_r_bg,
-      WT_sd_AUC = sd_AUC_bg,
-      
-      # Calculate raw data
-      Raw_Shift_L = first(mean_L) - first(mean_L_bg),
-      Raw_Shift_K = first(mean_K) - first(mean_K_bg),
-      Raw_Shift_r = first(mean_r) - first(mean_r_bg),
-      Raw_Shift_AUC = first(mean_AUC) - first(mean_AUC_bg),
-      Z_Shift_L = Raw_Shift_L / first(sd_L_bg),
-      Z_Shift_K = Raw_Shift_K / first(sd_K_bg),
-      Z_Shift_r = Raw_Shift_r / first(sd_r_bg),
-      Z_Shift_AUC = Raw_Shift_AUC / first(sd_AUC_bg),
-      
+      num_non_removed_concs = n_distinct(conc_num[DB != 1]),
+
+      # Raw shifts
+      Raw_Shift_L = mean_L - WT_L,
+      Raw_Shift_K = mean_K - WT_K,
+      Raw_Shift_r = mean_r - WT_r,
+      Raw_Shift_AUC = mean_AUC - WT_AUC,
+
+      # Z shifts
+      Z_Shift_L = Raw_Shift_L / WT_sd_L,
+      Z_Shift_K = Raw_Shift_K / WT_sd_K,
+      Z_Shift_r = Raw_Shift_r / WT_sd_r,
+      Z_Shift_AUC = Raw_Shift_AUC / WT_sd_AUC,
+
       # Expected values
       Exp_L = WT_L + Raw_Shift_L,
       Exp_K = WT_K + Raw_Shift_K,
       Exp_r = WT_r + Raw_Shift_r,
       Exp_AUC = WT_AUC + Raw_Shift_AUC,
-      
+
       # Deltas
       Delta_L = mean_L - Exp_L,
       Delta_K = mean_K - Exp_K,
       Delta_r = mean_r - Exp_r,
       Delta_AUC = mean_AUC - Exp_AUC,
+
+      # Adjust Deltas for NG and SM
       Delta_L = if_else(NG == 1, mean_L - WT_L, Delta_L),
       Delta_K = if_else(NG == 1, mean_K - WT_K, Delta_K),
       Delta_r = if_else(NG == 1, mean_r - WT_r, Delta_r),
       Delta_AUC = if_else(NG == 1, mean_AUC - WT_AUC, Delta_AUC),
       Delta_L = if_else(SM == 1, mean_L - WT_L, Delta_L),
-      
-      # Calculate Z-scores
+
+      # Z-scores
       Zscore_L = Delta_L / WT_sd_L,
       Zscore_K = Delta_K / WT_sd_K,
       Zscore_r = Delta_r / WT_sd_r,
       Zscore_AUC = Delta_AUC / WT_sd_AUC
     ) %>%
+    ungroup()
+
+  # Fit linear models within each group
+  calculations <- calculations %>%
+    group_by(across(all_of(group_vars))) %>%
     group_modify(~ {
-      # Perform linear models
-      lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
-      lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
-      lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
-      lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
-    
-      .x %>%
+      data <- .x
+      # Fit linear models
+      lm_L <- lm(Delta_L ~ conc_num_factor, data = data)
+      lm_K <- lm(Delta_K ~ conc_num_factor, data = data)
+      lm_r <- lm(Delta_r ~ conc_num_factor, data = data)
+      lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = data)
+      data <- data %>%
         mutate(
           lm_intercept_L = coef(lm_L)[1],
           lm_slope_L = coef(lm_L)[2],
           R_Squared_L = summary(lm_L)$r.squared,
           lm_Score_L = max_conc * lm_slope_L + lm_intercept_L,
-          
+          # Repeat for K, r, and AUC
           lm_intercept_K = coef(lm_K)[1],
           lm_slope_K = coef(lm_K)[2],
           R_Squared_K = summary(lm_K)$r.squared,
           lm_Score_K = max_conc * lm_slope_K + lm_intercept_K,
-          
           lm_intercept_r = coef(lm_r)[1],
           lm_slope_r = coef(lm_r)[2],
           R_Squared_r = summary(lm_r)$r.squared,
           lm_Score_r = max_conc * lm_slope_r + lm_intercept_r,
-          
           lm_intercept_AUC = coef(lm_AUC)[1],
           lm_slope_AUC = coef(lm_AUC)[2],
           R_Squared_AUC = summary(lm_AUC)$r.squared,
           lm_Score_AUC = max_conc * lm_slope_AUC + lm_intercept_AUC
         )
+      return(data)
     }) %>%
     ungroup()
 
-  # Summary statistics for lm scores
+  # Compute lm means and sds across all data without grouping
   lm_means_sds <- calculations %>%
-    group_by(across(all_of(group_vars))) %>%
     summarise(
-      mean_lm_L = mean(lm_Score_L, na.rm = TRUE),
-      sd_lm_L = sd(lm_Score_L, na.rm = TRUE),
-      mean_lm_K = mean(lm_Score_K, na.rm = TRUE),
-      sd_lm_K = sd(lm_Score_K, na.rm = TRUE),
-      mean_lm_r = mean(lm_Score_r, na.rm = TRUE),
-      sd_lm_r = sd(lm_Score_r, na.rm = TRUE),
-      mean_lm_AUC = mean(lm_Score_AUC, na.rm = TRUE),
-      sd_lm_AUC = sd(lm_Score_AUC, na.rm = TRUE)
+      lm_mean_L = mean(lm_Score_L, na.rm = TRUE),
+      lm_sd_L = sd(lm_Score_L, na.rm = TRUE),
+      lm_mean_K = mean(lm_Score_K, na.rm = TRUE),
+      lm_sd_K = sd(lm_Score_K, na.rm = TRUE),
+      lm_mean_r = mean(lm_Score_r, na.rm = TRUE),
+      lm_sd_r = sd(lm_Score_r, na.rm = TRUE),
+      lm_mean_AUC = mean(lm_Score_AUC, na.rm = TRUE),
+      lm_sd_AUC = sd(lm_Score_AUC, na.rm = TRUE)
     )
-  
-  # Continue with gene Z-scores and interactions
+
+  # Apply global lm means and sds to calculate Z_lm_*
   calculations <- calculations %>%
-    left_join(lm_means_sds, by = group_vars) %>%
-    group_by(across(all_of(group_vars))) %>%
     mutate(
-      Z_lm_L = (lm_Score_L - mean_lm_L) / sd_lm_L,
-      Z_lm_K = (lm_Score_K - mean_lm_K) / sd_lm_K,
-      Z_lm_r = (lm_Score_r - mean_lm_r) / sd_lm_r,
-      Z_lm_AUC = (lm_Score_AUC - mean_lm_AUC) / sd_lm_AUC
+      Z_lm_L = (lm_Score_L - lm_means_sds$lm_mean_L) / lm_means_sds$lm_sd_L,
+      Z_lm_K = (lm_Score_K - lm_means_sds$lm_mean_K) / lm_means_sds$lm_sd_K,
+      Z_lm_r = (lm_Score_r - lm_means_sds$lm_mean_r) / lm_means_sds$lm_sd_r,
+      Z_lm_AUC = (lm_Score_AUC - lm_means_sds$lm_mean_AUC) / lm_means_sds$lm_sd_AUC
     )
 
-  # Build summary stats (interactions)
+  # Build interactions data frame
   interactions <- calculations %>%
     group_by(across(all_of(group_vars))) %>%
     summarise(
-      Avg_Zscore_L = sum(Zscore_L, na.rm = TRUE) / first(num_non_removed_concs),
-      Avg_Zscore_K = sum(Zscore_K, na.rm = TRUE) / first(num_non_removed_concs),
-      Avg_Zscore_r = sum(Zscore_r, na.rm = TRUE) / first(num_non_removed_concs),
-      Avg_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) / first(num_non_removed_concs),
-      
+      Avg_Zscore_L = mean(Zscore_L, na.rm = TRUE),
+      Avg_Zscore_K = mean(Zscore_K, na.rm = TRUE),
+      Avg_Zscore_r = mean(Zscore_r, na.rm = TRUE),
+      Avg_Zscore_AUC = mean(Zscore_AUC, na.rm = TRUE),
+
       # Interaction Z-scores
       Z_lm_L = first(Z_lm_L),
       Z_lm_K = first(Z_lm_K),
       Z_lm_r = first(Z_lm_r),
       Z_lm_AUC = first(Z_lm_AUC),
-      
+
       # Raw Shifts
       Raw_Shift_L = first(Raw_Shift_L),
       Raw_Shift_K = first(Raw_Shift_K),
       Raw_Shift_r = first(Raw_Shift_r),
       Raw_Shift_AUC = first(Raw_Shift_AUC),
-      
+
       # Z Shifts
       Z_Shift_L = first(Z_Shift_L),
       Z_Shift_K = first(Z_Shift_K),
       Z_Shift_r = first(Z_Shift_r),
       Z_Shift_AUC = first(Z_Shift_AUC),
-      
+
       # NG, DB, SM values
       NG = first(NG),
       DB = first(DB),
-      SM = first(SM)
+      SM = first(SM),
+
+      # R Squared values
+      R_Squared_L = first(R_Squared_L),
+      R_Squared_K = first(R_Squared_K),
+      R_Squared_r = first(R_Squared_r),
+      R_Squared_AUC = first(R_Squared_AUC),
+
+      .groups = "drop"
     )
 
-  # Creating the final calculations and interactions dataframes with only required columns for csv output
+  # Create the final calculations and interactions dataframes with required columns
   calculations_df <- calculations %>%
     select(
       all_of(group_vars),
       conc_num, conc_num_factor, conc_num_factor_factor,
       N, NG, DB, SM,
-      mean_L, median_L, sd_L, se_L,
-      mean_K, median_K, sd_K, se_K,
-      mean_r, median_r, sd_r, se_r,
-      mean_AUC, median_AUC, sd_AUC, se_AUC,
+      mean_L, mean_K, mean_r, mean_AUC,
       Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
       Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
       WT_L, WT_K, WT_r, WT_AUC,
@@ -398,23 +408,15 @@ calculate_interaction_scores <- function(df, bg_df, group_vars, overlap_threshol
       Avg_Zscore_L, Avg_Zscore_K, Avg_Zscore_r, Avg_Zscore_AUC,
       Z_lm_L, Z_lm_K, Z_lm_r, Z_lm_AUC,
       Raw_Shift_L, Raw_Shift_K, Raw_Shift_r, Raw_Shift_AUC,
-      Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC
+      Z_Shift_L, Z_Shift_K, Z_Shift_r, Z_Shift_AUC,
+      R_Squared_L, R_Squared_K, R_Squared_r, R_Squared_AUC
     )
 
-  calculations_no_overlap <- calculations %>%
-    # DB, NG, SM are same as in interactions, the rest may be different and need to be checked
-    select(-any_of(c(
-      "DB", "NG", "SM",
-      "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
-      "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
-      "Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC"
-    )))
-
-  # Use left_join to avoid dimension mismatch issues
-  full_data <- calculations_no_overlap %>%
-    left_join(interactions, by = group_vars)
+  # Create full_data by joining calculations_df and interactions_df
+  full_data <- calculations_df %>%
+    left_join(interactions_df, by = group_vars, suffix = c("", "_interaction"))
 
-  # Return full_data and the two required dataframes (calculations and interactions)
+  # Return the dataframes
   return(list(
     calculations = calculations_df,
     interactions = interactions_df,
@@ -1118,7 +1120,7 @@ main <- function() {
     df_stats <- calculate_summary_stats(
       df = df,
       variables = c("L", "K", "r", "AUC", "delta_bg"),
-      group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$df_with_stats
+      group_vars = c("conc_num"))$df_with_stats
 
     frequency_delta_bg_plot_configs <- list(
       plots = list(
@@ -1184,7 +1186,7 @@ main <- function() {
     ss <- calculate_summary_stats(
       df = df_na,
       variables = c("L", "K", "r", "AUC", "delta_bg"),
-      group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
+      group_vars = c("conc_num"))
     df_na_ss <- ss$summary_stats
     df_na_stats <- ss$df_with_stats # formerly X_stats_ALL
     write.csv(df_na_ss, file = file.path(out_dir, "summary_stats_all_strains.csv"), row.names = FALSE)
@@ -1196,7 +1198,7 @@ main <- function() {
     df_no_zeros_stats <- calculate_summary_stats(
       df = df_no_zeros,
       variables = c("L", "K", "r", "AUC", "delta_bg"),
-      group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor")
+      group_vars = c("conc_num")
     )$df_with_stats
 
     message("Filtering by 2SD of K")
@@ -1208,13 +1210,13 @@ main <- function() {
     message("Calculating summary statistics for L within 2SD of K")
     # TODO We're omitting the original z_max calculation, not sure if needed?
     ss <- calculate_summary_stats(df_na_within_2sd_k, "L",
-      group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))$summary_stats
+      group_vars = c("conc_num"))$summary_stats
     write.csv(ss,
       file = file.path(out_dir_qc, "max_observed_L_vals_for_spots_within_2sd_K.csv"),
       row.names = FALSE)
     
     message("Calculating summary statistics for L outside 2SD of K")
-    ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num", "conc_num_factor", "conc_num_factor_factor"))
+    ss <- calculate_summary_stats(df_na_outside_2sd_k, "L", group_vars = c("conc_num"))
     df_na_l_outside_2sd_k_stats <- ss$df_with_stats
     write.csv(ss$summary_stats,
       file = file.path(out_dir, "max_observed_L_vals_for_spots_outside_2sd_K.csv"),
@@ -1342,7 +1344,7 @@ main <- function() {
       
       message("Calculating summary statistics for background strain")
       ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"),
-        group_vars = c("OrfRep", "conc_num", "conc_num_factor", "conc_num_factor_factor"))
+        group_vars = c("OrfRep", "conc_num"))
       summary_stats_bg <- ss_bg$summary_stats
       df_bg_stats <- ss_bg$df_with_stats
       write.csv(
@@ -1354,7 +1356,7 @@ main <- function() {
       df_reference <- df_na_stats %>% # formerly X2_RF
         filter(OrfRep == strain) %>%
         filter(!is.na(L)) %>%
-        group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
+        group_by(conc_num) %>%
         mutate(
           max_l_theoretical = max(max_L, na.rm = TRUE),
           L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
@@ -1366,7 +1368,7 @@ main <- function() {
       df_reference_stats <- calculate_summary_stats(
         df = df_reference,
         variables = c("L", "K", "r", "AUC"),
-        group_vars = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor")
+        group_vars = c("OrfRep", "Gene", "num", "conc_num")
         )$df_with_stats
       reference_results <- calculate_interaction_scores(df_reference_stats, df_bg_stats, group_vars = c("OrfRep", "Gene", "num"))
       zscore_calculations_reference <- reference_results$calculations
@@ -1377,7 +1379,7 @@ main <- function() {
       df_deletion <- df_na_stats %>% # formerly X2
         filter(OrfRep != strain) %>%
         filter(!is.na(L)) %>%
-        group_by(conc_num, conc_num_factor, conc_num_factor_factor) %>%
+        group_by(conc_num) %>%
         mutate(
           max_l_theoretical = max(max_L, na.rm = TRUE),
           L = ifelse(L == 0 & !is.na(L) & conc_num > 0, max_l_theoretical, L),
@@ -1389,7 +1391,7 @@ main <- function() {
       df_deletion_stats <- calculate_summary_stats(
         df = df_deletion,
         variables = c("L", "K", "r", "AUC"),
-        group_vars = c("OrfRep", "Gene", "conc_num", "conc_num_factor")
+        group_vars = c("OrfRep", "Gene", "conc_num")
         )$df_with_stats
       deletion_results <- calculate_interaction_scores(df_deletion_stats, df_bg_stats, group_vars = c("OrfRep", "Gene"))
       zscore_calculations <- deletion_results$calculations