|
@@ -300,52 +300,45 @@ calculate_interaction_scores <- function(df, df_bg, type, overlap_threshold = 2)
|
|
|
ungroup() %>% # Ungroup before group_modify
|
|
|
group_by(across(all_of(group_vars))) %>%
|
|
|
group_modify(~ {
|
|
|
- # Check if there are enough unique conc_num_factor levels to perform lm
|
|
|
- if (length(unique(.x$conc_num_factor)) > 1) {
|
|
|
-
|
|
|
- # Perform linear modeling
|
|
|
- lm_L <- lm(Delta_L ~ conc_num_factor, data = .x)
|
|
|
- lm_K <- lm(Delta_K ~ conc_num_factor, data = .x)
|
|
|
- lm_r <- lm(Delta_r ~ conc_num_factor, data = .x)
|
|
|
- lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = .x)
|
|
|
-
|
|
|
- # If the model fails, set model-related values to NA
|
|
|
- .x %>%
|
|
|
- mutate(
|
|
|
- lm_intercept_L = ifelse(!is.null(lm_L), coef(lm_L)[1], NA),
|
|
|
- lm_slope_L = ifelse(!is.null(lm_L), coef(lm_L)[2], NA),
|
|
|
- R_Squared_L = ifelse(!is.null(lm_L), summary(lm_L)$r.squared, NA),
|
|
|
- lm_Score_L = ifelse(!is.null(lm_L), max_conc * coef(lm_L)[2] + coef(lm_L)[1], NA),
|
|
|
-
|
|
|
- lm_intercept_K = ifelse(!is.null(lm_K), coef(lm_K)[1], NA),
|
|
|
- lm_slope_K = ifelse(!is.null(lm_K), coef(lm_K)[2], NA),
|
|
|
- R_Squared_K = ifelse(!is.null(lm_K), summary(lm_K)$r.squared, NA),
|
|
|
- lm_Score_K = ifelse(!is.null(lm_K), max_conc * coef(lm_K)[2] + coef(lm_K)[1], NA),
|
|
|
-
|
|
|
- lm_intercept_r = ifelse(!is.null(lm_r), coef(lm_r)[1], NA),
|
|
|
- lm_slope_r = ifelse(!is.null(lm_r), coef(lm_r)[2], NA),
|
|
|
- R_Squared_r = ifelse(!is.null(lm_r), summary(lm_r)$r.squared, NA),
|
|
|
- lm_Score_r = ifelse(!is.null(lm_r), max_conc * coef(lm_r)[2] + coef(lm_r)[1], NA),
|
|
|
-
|
|
|
- lm_intercept_AUC = ifelse(!is.null(lm_AUC), coef(lm_AUC)[1], NA),
|
|
|
- lm_slope_AUC = ifelse(!is.null(lm_AUC), coef(lm_AUC)[2], NA),
|
|
|
- R_Squared_AUC = ifelse(!is.null(lm_AUC), summary(lm_AUC)$r.squared, NA),
|
|
|
- lm_Score_AUC = ifelse(!is.null(lm_AUC), max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1], NA)
|
|
|
- )
|
|
|
- } else {
|
|
|
- # If not enough conc_num_factor levels, set lm-related values to NA
|
|
|
- .x %>%
|
|
|
- mutate(
|
|
|
- lm_intercept_L = NA, lm_slope_L = NA, R_Squared_L = NA, lm_Score_L = NA,
|
|
|
- lm_intercept_K = NA, lm_slope_K = NA, R_Squared_K = NA, lm_Score_K = NA,
|
|
|
- lm_intercept_r = NA, lm_slope_r = NA, R_Squared_r = NA, lm_Score_r = NA,
|
|
|
- lm_intercept_AUC = NA, lm_slope_AUC = NA, R_Squared_AUC = NA, lm_Score_AUC = NA
|
|
|
- )
|
|
|
- }
|
|
|
+
|
|
|
+ # Filter each column for valid data or else linear modeling will fail
|
|
|
+ valid_data_L <- .x %>% filter(!is.na(Delta_L))
|
|
|
+ valid_data_K <- .x %>% filter(!is.na(Delta_K))
|
|
|
+ valid_data_r <- .x %>% filter(!is.na(Delta_r))
|
|
|
+ valid_data_AUC <- .x %>% filter(!is.na(Delta_AUC))
|
|
|
+
|
|
|
+ # Perform linear modeling
|
|
|
+ lm_L <- if (nrow(valid_data_L) > 1) lm(Delta_L ~ conc_num_factor, data = valid_data_L) else NULL
|
|
|
+ lm_K <- if (nrow(valid_data_K) > 1) lm(Delta_K ~ conc_num_factor, data = valid_data_K) else NULL
|
|
|
+ lm_r <- if (nrow(valid_data_r) > 1) lm(Delta_r ~ conc_num_factor, data = valid_data_r) else NULL
|
|
|
+ lm_AUC <- if (nrow(valid_data_AUC) > 1) lm(Delta_AUC ~ conc_num_factor, data = valid_data_AUC) else NULL
|
|
|
+
|
|
|
+ # Extract coefficients for calculations and plotting
|
|
|
+ .x %>%
|
|
|
+ mutate(
|
|
|
+ lm_intercept_L = if (!is.null(lm_L)) coef(lm_L)[1] else NA,
|
|
|
+ lm_slope_L = if (!is.null(lm_L)) coef(lm_L)[2] else NA,
|
|
|
+ R_Squared_L = if (!is.null(lm_L)) summary(lm_L)$r.squared else NA,
|
|
|
+ lm_Score_L = if (!is.null(lm_L)) max_conc * coef(lm_L)[2] + coef(lm_L)[1] else NA,
|
|
|
+
|
|
|
+ lm_intercept_K = if (!is.null(lm_K)) coef(lm_K)[1] else NA,
|
|
|
+ lm_slope_K = if (!is.null(lm_K)) coef(lm_K)[2] else NA,
|
|
|
+ R_Squared_K = if (!is.null(lm_K)) summary(lm_K)$r.squared else NA,
|
|
|
+ lm_Score_K = if (!is.null(lm_K)) max_conc * coef(lm_K)[2] + coef(lm_K)[1] else NA,
|
|
|
+
|
|
|
+ lm_intercept_r = if (!is.null(lm_r)) coef(lm_r)[1] else NA,
|
|
|
+ lm_slope_r = if (!is.null(lm_r)) coef(lm_r)[2] else NA,
|
|
|
+ R_Squared_r = if (!is.null(lm_r)) summary(lm_r)$r.squared else NA,
|
|
|
+ lm_Score_r = if (!is.null(lm_r)) max_conc * coef(lm_r)[2] + coef(lm_r)[1] else NA,
|
|
|
+
|
|
|
+ lm_intercept_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[1] else NA,
|
|
|
+ lm_slope_AUC = if (!is.null(lm_AUC)) coef(lm_AUC)[2] else NA,
|
|
|
+ R_Squared_AUC = if (!is.null(lm_AUC)) summary(lm_AUC)$r.squared else NA,
|
|
|
+ lm_Score_AUC = if (!is.null(lm_AUC)) max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1] else NA
|
|
|
+ )
|
|
|
}) %>%
|
|
|
ungroup()
|
|
|
|
|
|
-
|
|
|
# For interaction plot error bars
|
|
|
delta_means_sds <- calculations %>%
|
|
|
group_by(across(all_of(group_vars))) %>%
|
|
@@ -631,78 +624,6 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- # Add error bars if specified
|
|
|
- if (!is.null(config$error_bar) && config$error_bar) {
|
|
|
- # Check if custom columns are provided for y_mean and y_sd, or use the defaults
|
|
|
- y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
|
|
|
- config$error_bar_params$y_mean_col
|
|
|
- } else {
|
|
|
- paste0("mean_", config$y_var)
|
|
|
- }
|
|
|
-
|
|
|
- y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
|
|
|
- config$error_bar_params$y_sd_col
|
|
|
- } else {
|
|
|
- paste0("sd_", config$y_var)
|
|
|
- }
|
|
|
-
|
|
|
- # Use rlang to handle custom error bar calculations
|
|
|
- if (!is.null(config$error_bar_params$custom_error_bar)) {
|
|
|
- custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
|
|
|
- custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
|
|
|
-
|
|
|
- plot <- plot + geom_errorbar(
|
|
|
- aes(
|
|
|
- ymin = !!custom_ymin_expr,
|
|
|
- ymax = !!custom_ymax_expr
|
|
|
- ),
|
|
|
- color = config$error_bar_params$color,
|
|
|
- linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
|
|
|
- )
|
|
|
- } else {
|
|
|
- # If no custom error bar formula, use the default or dynamic ones
|
|
|
- if (!is.null(config$color_var) && config$color_var %in% colnames(config$df)) {
|
|
|
- # Only use color_var if it's present in the dataframe
|
|
|
- plot <- plot + geom_errorbar(
|
|
|
- aes(
|
|
|
- ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
|
|
|
- ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
|
|
|
- color = .data[[config$color_var]]
|
|
|
- ),
|
|
|
- linewidth = 0.1
|
|
|
- )
|
|
|
- } else {
|
|
|
- # If color_var is missing, fall back to a default color or none
|
|
|
- plot <- plot + geom_errorbar(
|
|
|
- aes(
|
|
|
- ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
|
|
|
- ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
|
|
|
- ),
|
|
|
- color = config$error_bar_params$color, # use the provided color or default
|
|
|
- linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
|
|
|
- )
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- # Add the center point if the option is provided
|
|
|
- if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
|
|
|
- if (!is.null(config$error_bar_params$color)) {
|
|
|
- plot <- plot + geom_point(
|
|
|
- mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
|
|
|
- color = config$error_bar_params$color,
|
|
|
- shape = 16,
|
|
|
- inherit.aes = FALSE # Prevent overriding global aesthetics
|
|
|
- )
|
|
|
- } else {
|
|
|
- plot <- plot + geom_point(
|
|
|
- mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
|
|
|
- shape = 16,
|
|
|
- inherit.aes = FALSE # Prevent overriding global aesthetics
|
|
|
- )
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
# Convert ggplot to plotly for interactive version
|
|
|
plotly_plot <- suppressWarnings(plotly::ggplotly(plot))
|
|
|
|
|
@@ -729,16 +650,17 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
|
|
total_spots <- grid_layout$nrow * grid_layout$ncol
|
|
|
num_plots <- length(static_plots)
|
|
|
|
|
|
- # if (num_plots < total_spots) {
|
|
|
- # message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
|
|
|
- # static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
|
|
|
- # }
|
|
|
+ if (num_plots < total_spots) {
|
|
|
+ message("Filling ", total_spots - num_plots, " empty spots with nullGrob()")
|
|
|
+ static_plots <- c(static_plots, replicate(total_spots - num_plots, nullGrob(), simplify = FALSE))
|
|
|
+ }
|
|
|
|
|
|
+ # Print a page of gridded plots
|
|
|
grid.arrange(
|
|
|
grobs = static_plots,
|
|
|
ncol = grid_layout$ncol,
|
|
|
- nrow = grid_layout$nrow
|
|
|
- )
|
|
|
+ nrow = grid_layout$nrow)
|
|
|
+
|
|
|
} else {
|
|
|
# Print individual plots on separate pages if no grid layout
|
|
|
for (plot in static_plots) {
|
|
@@ -788,6 +710,78 @@ generate_scatter_plot <- function(plot, config) {
|
|
|
inherit.aes = FALSE
|
|
|
)
|
|
|
}
|
|
|
+
|
|
|
+ # Add error bars if specified
|
|
|
+ if (!is.null(config$error_bar) && config$error_bar) {
|
|
|
+ # Check if custom columns are provided for y_mean and y_sd, or use the defaults
|
|
|
+ y_mean_col <- if (!is.null(config$error_bar_params$y_mean_col)) {
|
|
|
+ config$error_bar_params$y_mean_col
|
|
|
+ } else {
|
|
|
+ paste0("mean_", config$y_var)
|
|
|
+ }
|
|
|
+
|
|
|
+ y_sd_col <- if (!is.null(config$error_bar_params$y_sd_col)) {
|
|
|
+ config$error_bar_params$y_sd_col
|
|
|
+ } else {
|
|
|
+ paste0("sd_", config$y_var)
|
|
|
+ }
|
|
|
+
|
|
|
+ # Use rlang to handle custom error bar calculations
|
|
|
+ if (!is.null(config$error_bar_params$custom_error_bar)) {
|
|
|
+ custom_ymin_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymin)
|
|
|
+ custom_ymax_expr <- rlang::parse_expr(config$error_bar_params$custom_error_bar$ymax)
|
|
|
+
|
|
|
+ plot <- plot + geom_errorbar(
|
|
|
+ aes(
|
|
|
+ ymin = !!custom_ymin_expr,
|
|
|
+ ymax = !!custom_ymax_expr
|
|
|
+ ),
|
|
|
+ color = config$error_bar_params$color,
|
|
|
+ linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
|
|
|
+ )
|
|
|
+ } else {
|
|
|
+ # If no custom error bar formula, use the default or dynamic ones
|
|
|
+ if (!is.null(config$color_var) && config$color_var %in% colnames(config$df)) {
|
|
|
+ # Only use color_var if it's present in the dataframe
|
|
|
+ plot <- plot + geom_errorbar(
|
|
|
+ aes(
|
|
|
+ ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
|
|
|
+ ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
|
|
|
+ color = .data[[config$color_var]]
|
|
|
+ ),
|
|
|
+ linewidth = 0.1
|
|
|
+ )
|
|
|
+ } else {
|
|
|
+ # If color_var is missing, fall back to a default color or none
|
|
|
+ plot <- plot + geom_errorbar(
|
|
|
+ aes(
|
|
|
+ ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
|
|
|
+ ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
|
|
|
+ ),
|
|
|
+ color = config$error_bar_params$color, # use the provided color or default
|
|
|
+ linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
|
|
|
+ )
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ # Add the center point if the option is provided
|
|
|
+ if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
|
|
|
+ if (!is.null(config$error_bar_params$color)) {
|
|
|
+ plot <- plot + geom_point(
|
|
|
+ mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
|
|
|
+ color = config$error_bar_params$color,
|
|
|
+ shape = 16,
|
|
|
+ inherit.aes = FALSE # Prevent overriding global aesthetics
|
|
|
+ )
|
|
|
+ } else {
|
|
|
+ plot <- plot + geom_point(
|
|
|
+ mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
|
|
|
+ shape = 16,
|
|
|
+ inherit.aes = FALSE # Prevent overriding global aesthetics
|
|
|
+ )
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
# Add linear regression line if specified
|
|
|
if (!is.null(config$lm_line)) {
|
|
@@ -1570,7 +1564,7 @@ main <- function() {
|
|
|
) %>%
|
|
|
filter(!is.na(L))
|
|
|
|
|
|
- message("Calculating background strain summary statistics")
|
|
|
+ message("Calculating background summary statistics")
|
|
|
ss_bg <- calculate_summary_stats(df_bg, c("L", "K", "r", "AUC", "delta_bg"), # formerly X_stats_BY
|
|
|
group_vars = c("OrfRep", "Drug", "conc_num", "conc_num_factor_factor"))
|
|
|
summary_stats_bg <- ss_bg$summary_stats
|
|
@@ -1621,16 +1615,16 @@ main <- function() {
|
|
|
group_vars = c("OrfRep", "Gene", "num", "Drug", "conc_num", "conc_num_factor_factor")
|
|
|
)$df_with_stats
|
|
|
|
|
|
- message("Calculating reference strain interaction scores")
|
|
|
- reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
|
|
|
- df_reference_interactions_joined <- reference_results$full_data
|
|
|
- df_reference_interactions <- reference_results$interactions
|
|
|
- write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
|
|
|
- write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
|
|
|
-
|
|
|
- message("Generating reference interaction plots")
|
|
|
- reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
|
|
|
- generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
|
|
|
+ # message("Calculating reference strain interaction scores")
|
|
|
+ # reference_results <- calculate_interaction_scores(df_reference_interaction_stats, df_bg_stats, "reference")
|
|
|
+ # df_reference_interactions_joined <- reference_results$full_data
|
|
|
+ # df_reference_interactions <- reference_results$interactions
|
|
|
+ # write.csv(reference_results$calculations, file = file.path(out_dir, "zscore_calculations_reference.csv"), row.names = FALSE)
|
|
|
+ # write.csv(df_reference_interactions, file = file.path(out_dir, "zscore_interactions_reference.csv"), row.names = FALSE)
|
|
|
+
|
|
|
+ # message("Generating reference interaction plots")
|
|
|
+ # reference_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_reference_interactions_joined, "reference")
|
|
|
+ # generate_and_save_plots(out_dir, "interaction_plots_reference", reference_plot_configs, page_width = 16, page_height = 16)
|
|
|
|
|
|
message("Setting missing deletion values to the highest theoretical value at each drug conc for L")
|
|
|
df_deletion <- df_na_stats %>% # formerly X2
|