Convert tidy symbols
This commit is contained in:
@@ -528,7 +528,7 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
||||
# Filter NAs
|
||||
if (!is.null(config$filter_na) && config$filter_na) {
|
||||
df <- df %>%
|
||||
filter(!is.na(.data[[config$y_var]]))
|
||||
filter(!is.na(!!sym(config$y_var)))
|
||||
}
|
||||
|
||||
# TODO for now skip all NA plots NA data
|
||||
@@ -539,17 +539,17 @@ generate_and_save_plots <- function(out_dir, filename, plot_configs, page_width
|
||||
}
|
||||
|
||||
# Create initial aes mappings for all plot types
|
||||
aes_mapping <- aes(x = .data[[config$x_var]]) # required
|
||||
aes_mapping <- aes(x = !!sym(config$x_var)) # required
|
||||
if (!is.null(config$y_var)) {
|
||||
aes_mapping <- modifyList(aes_mapping, aes(y = .data[[config$y_var]])) # optional for density/bar plots
|
||||
aes_mapping <- modifyList(aes_mapping, aes(y = !!sym(config$y_var))) # optional for density/bar plots
|
||||
}
|
||||
if (!is.null(config$color_var)) {
|
||||
aes_mapping <- modifyList(aes_mapping, aes(color = .data[[config$color_var]])) # dynamic color_var
|
||||
aes_mapping <- modifyList(aes_mapping, aes(color = !!sym(config$color_var))) # dynamic color_var
|
||||
} else if (!is.null(config$color)) {
|
||||
aes_mapping <- modifyList(aes_mapping, aes(color = config$color)) # static color
|
||||
}
|
||||
if (config$plot_type == "bar" && !is.null(config$color_var)) {
|
||||
aes_mapping <- modifyList(aes_mapping, aes(fill = .data[[config$color_var]])) # only fill bar plots
|
||||
aes_mapping <- modifyList(aes_mapping, aes(fill = !!sym(config$color_var))) # only fill bar plots
|
||||
}
|
||||
|
||||
# Begin plot generation
|
||||
@@ -642,12 +642,11 @@ generate_scatter_plot <- function(plot, config) {
|
||||
# Add a cyan point for the reference data for correlation plots
|
||||
if (!is.null(config$cyan_points) && config$cyan_points) {
|
||||
plot <- plot + geom_point(
|
||||
aes(x = !!sym(config$x_var), y = !!sym(config$y_var)),
|
||||
data = config$df_reference,
|
||||
mapping = aes(x = .data[[config$x_var]], y = .data[[config$y_var]]),
|
||||
color = "cyan",
|
||||
shape = 3,
|
||||
size = 0.5,
|
||||
inherit.aes = FALSE
|
||||
size = 0.5
|
||||
)
|
||||
}
|
||||
|
||||
@@ -685,9 +684,9 @@ generate_scatter_plot <- function(plot, config) {
|
||||
# Only use color_var if it's present in the dataframe
|
||||
plot <- plot + geom_errorbar(
|
||||
aes(
|
||||
ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
|
||||
ymax = .data[[y_mean_col]] + .data[[y_sd_col]],
|
||||
color = .data[[config$color_var]]
|
||||
ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
|
||||
ymax = !!sym(y_mean_col) + !!sym(y_sd_col),
|
||||
color = !!sym(config$color_var)
|
||||
),
|
||||
linewidth = 0.1
|
||||
)
|
||||
@@ -695,8 +694,8 @@ generate_scatter_plot <- function(plot, config) {
|
||||
# If color_var is missing, fall back to a default color or none
|
||||
plot <- plot + geom_errorbar(
|
||||
aes(
|
||||
ymin = .data[[y_mean_col]] - .data[[y_sd_col]],
|
||||
ymax = .data[[y_mean_col]] + .data[[y_sd_col]]
|
||||
ymin = !!sym(y_mean_col) - !!sym(y_sd_col),
|
||||
ymax = !!sym(y_mean_col) + !!sym(y_sd_col)
|
||||
),
|
||||
color = config$error_bar_params$color, # use the provided color or default
|
||||
linewidth = ifelse(is.null(config$error_bar_params$linewidth), 0.1, config$error_bar_params$linewidth)
|
||||
@@ -708,16 +707,14 @@ generate_scatter_plot <- function(plot, config) {
|
||||
if (!is.null(config$error_bar_params$mean_point) && config$error_bar_params$mean_point) {
|
||||
if (!is.null(config$error_bar_params$color)) {
|
||||
plot <- plot + geom_point(
|
||||
mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
|
||||
aes(x = !!sym(config$x_var), y = !!sym(y_mean_col)),
|
||||
color = config$error_bar_params$color,
|
||||
shape = 16,
|
||||
inherit.aes = FALSE # Prevent overriding global aesthetics
|
||||
shape = 16
|
||||
)
|
||||
} else {
|
||||
plot <- plot + geom_point(
|
||||
mapping = aes(x = .data[[config$x_var]], y = .data[[y_mean_col]]), # Include both x and y mappings
|
||||
shape = 16,
|
||||
inherit.aes = FALSE # Prevent overriding global aesthetics
|
||||
aes(x = !!sym(config$x_var), y = !!sym(y_mean_col)),
|
||||
shape = 16
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -726,30 +723,30 @@ generate_scatter_plot <- function(plot, config) {
|
||||
# Add linear regression line if specified
|
||||
if (!is.null(config$lm_line)) {
|
||||
# Extract necessary values
|
||||
x_min <- config$lm_line$x_min
|
||||
x_max <- config$lm_line$x_max
|
||||
intercept <- config$lm_line$intercept
|
||||
slope <- config$lm_line$slope
|
||||
intercept <- config$lm_line$intercept # required
|
||||
slope <- config$lm_line$slope # required
|
||||
xmin <- ifelse(!is.null(config$lm_line$xmin), config$lm_line$xmin, min(as.numeric(config$df[[config$x_var]])))
|
||||
xmax <- ifelse(!is.null(config$lm_line$xmax), config$lm_line$xmax, max(as.numeric(config$df[[config$x_var]])))
|
||||
color <- ifelse(!is.null(config$lm_line$color), config$lm_line$color, "blue")
|
||||
linewidth <- ifelse(!is.null(config$lm_line$linewidth), config$lm_line$linewidth, 1)
|
||||
y_min <- intercept + slope * x_min
|
||||
y_max <- intercept + slope * x_max
|
||||
ymin <- intercept + slope * xmin
|
||||
ymax <- intercept + slope * xmax
|
||||
|
||||
# Ensure y-values are within y-limits (if any)
|
||||
if (!is.null(config$ylim_vals)) {
|
||||
y_min_within_limits <- y_min >= config$ylim_vals[1] && y_min <= config$ylim_vals[2]
|
||||
y_max_within_limits <- y_max >= config$ylim_vals[1] && y_max <= config$ylim_vals[2]
|
||||
ymin_within_limits <- ymin >= config$ylim_vals[1] && ymin <= config$ylim_vals[2]
|
||||
ymax_within_limits <- ymax >= config$ylim_vals[1] && ymax <= config$ylim_vals[2]
|
||||
|
||||
# Adjust or skip based on whether the values fall within limits
|
||||
if (y_min_within_limits && y_max_within_limits) {
|
||||
if (ymin_within_limits && ymax_within_limits) {
|
||||
plot <- plot + annotate(
|
||||
"segment",
|
||||
x = x_min,
|
||||
xend = x_max,
|
||||
y = y_min,
|
||||
yend = y_max,
|
||||
x = xmin,
|
||||
xend = xmax,
|
||||
y = ymin,
|
||||
yend = ymax,
|
||||
color = color,
|
||||
linewidth = linewidth
|
||||
linewidth = linewidth,
|
||||
)
|
||||
} else {
|
||||
message("Skipping linear regression line due to y-values outside of limits")
|
||||
@@ -758,10 +755,10 @@ generate_scatter_plot <- function(plot, config) {
|
||||
# If no y-limits are provided, proceed with the annotation
|
||||
plot <- plot + annotate(
|
||||
"segment",
|
||||
x = x_min,
|
||||
xend = x_max,
|
||||
y = y_min,
|
||||
yend = y_max,
|
||||
x = xmin,
|
||||
xend = xmax,
|
||||
y = ymin,
|
||||
yend = ymax,
|
||||
color = color,
|
||||
linewidth = linewidth
|
||||
)
|
||||
@@ -837,7 +834,7 @@ generate_scatter_plot <- function(plot, config) {
|
||||
|
||||
generate_boxplot <- function(plot, config) {
|
||||
# Convert x_var to a factor within aes mapping
|
||||
plot <- plot + geom_boxplot(aes(x = factor(.data[[config$x_var]])))
|
||||
plot <- plot + geom_boxplot(aes(x = factor(!!sym(config$x_var))))
|
||||
|
||||
# Customize X-axis if specified
|
||||
if (!is.null(config$x_breaks) && !is.null(config$x_labels) && !is.null(config$x_label)) {
|
||||
@@ -871,7 +868,7 @@ generate_plate_analysis_plot_configs <- function(variables, df_before = NULL, df
|
||||
df_plot <- if (stage == "before") df_before else df_after
|
||||
|
||||
# Check for non-finite values in the y-variable
|
||||
# df_plot_filtered <- df_plot %>% filter(is.finite(.data[[var]]))
|
||||
# df_plot_filtered <- df_plot %>% filter(is.finite(!!sym(var)))
|
||||
|
||||
# Adjust settings based on plot_type
|
||||
plot_config <- list(
|
||||
@@ -950,7 +947,7 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
||||
)
|
||||
|
||||
for (x_val in unique(df_summary$conc_num_factor_factor)) {
|
||||
current_df <- df_summary %>% filter(.data[[plot_config$x_var]] == x_val)
|
||||
current_df <- df_summary %>% filter(!!sym(plot_config$x_var) == x_val)
|
||||
annotations <- append(annotations, list(
|
||||
list(x = x_val, y = y_limits[1] + 0.08 * y_span, label = first(current_df$NG, default = 0), size = 4),
|
||||
list(x = x_val, y = y_limits[1] + 0.04 * y_span, label = first(current_df$DB, default = 0), size = 4),
|
||||
@@ -1007,9 +1004,9 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
||||
|
||||
# Anti-filter to select out-of-bounds rows
|
||||
out_of_bounds <- group_data %>%
|
||||
filter(is.na(.data[[y_var_name]]) |
|
||||
.data[[y_var_name]] < y_limits[1] |
|
||||
.data[[y_var_name]] > y_limits[2])
|
||||
filter(is.na(!!sym(y_var_name)) |
|
||||
!!sym(y_var_name) < y_limits[1] |
|
||||
!!sym(y_var_name) > y_limits[2])
|
||||
|
||||
if (nrow(out_of_bounds) > 0) {
|
||||
message(sprintf("Filtered %d row(s) from '%s' because %s is outside of y-limits: [%f, %f]",
|
||||
@@ -1019,9 +1016,9 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
||||
|
||||
# Do the actual filtering
|
||||
group_data_filtered <- group_data %>%
|
||||
filter(!is.na(.data[[y_var_name]]) &
|
||||
.data[[y_var_name]] >= y_limits[1] &
|
||||
.data[[y_var_name]] <= y_limits[2])
|
||||
filter(!is.na(!!sym(y_var_name)) &
|
||||
!!sym(y_var_name) >= y_limits[1] &
|
||||
!!sym(y_var_name) <= y_limits[2])
|
||||
|
||||
if (nrow(group_data_filtered) == 0) {
|
||||
message("Insufficient data for plot: ", OrfRepTitle, " ", var)
|
||||
@@ -1039,8 +1036,8 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
||||
|
||||
lm_intercept_col <- paste0("lm_intercept_", var)
|
||||
lm_slope_col <- paste0("lm_slope_", var)
|
||||
lm_intercept_value <- first(group_data_filtered[[lm_intercept_col]], default = 0)
|
||||
lm_slope_value <- first(group_data_filtered[[lm_slope_col]], default = 0)
|
||||
lm_intercept <- first(group_data_filtered[[lm_intercept_col]], default = 0)
|
||||
lm_slope <- first(group_data_filtered[[lm_slope_col]], default = 0)
|
||||
|
||||
plot_config <- list(
|
||||
df = group_data_filtered,
|
||||
@@ -1073,12 +1070,10 @@ generate_interaction_plot_configs <- function(df_summary, df_interactions, type)
|
||||
x_labels = as.character(unique(group_data_filtered$conc_num)),
|
||||
ylim_vals = y_limits,
|
||||
lm_line = list(
|
||||
intercept = lm_intercept_value,
|
||||
slope = lm_slope_value,
|
||||
intercept = lm_intercept,
|
||||
slope = lm_slope,
|
||||
color = "blue",
|
||||
linewidth = 0.8,
|
||||
x_min = min(as.numeric(group_data_filtered$conc_num_factor_factor)),
|
||||
x_max = max(as.numeric(group_data_filtered$conc_num_factor_factor))
|
||||
linewidth = 0.8
|
||||
)
|
||||
)
|
||||
delta_plot_configs <- append(delta_plot_configs, list(plot_config))
|
||||
@@ -1194,6 +1189,12 @@ generate_correlation_plot_configs <- function(df, df_reference) {
|
||||
list(x = "r", y = "AUC")
|
||||
)
|
||||
|
||||
# Filter both dataframes for missing linear model zscores for plotting
|
||||
df <- df %>%
|
||||
filter(!is.na(Z_lm_L))
|
||||
df_reference <- df_reference %>%
|
||||
filter(!is.na(Z_lm_L))
|
||||
|
||||
plot_configs <- list()
|
||||
|
||||
# Iterate over the option to highlight cyan points (TRUE/FALSE)
|
||||
@@ -1205,11 +1206,14 @@ generate_correlation_plot_configs <- function(df, df_reference) {
|
||||
x_var <- paste0("Z_lm_", rel$x)
|
||||
y_var <- paste0("Z_lm_", rel$y)
|
||||
|
||||
# Extract the R-squared, intercept, and slope from the df
|
||||
relationship_name <- paste0(rel$x, "_vs_", rel$y)
|
||||
intercept <- df[[paste0("lm_intercept_", rel$x)]]
|
||||
slope <- df[[paste0("lm_slope_", rel$x)]]
|
||||
r_squared <- df[[paste0("lm_R_squared_", rel$x)]]
|
||||
# Find the max and min of both dataframes for printing linear regression line
|
||||
xmin <- min(c(min(df[[x_var]], na.rm = TRUE), min(df_reference[[x_var]], na.rm = TRUE)), na.rm = TRUE)
|
||||
xmax <- max(c(max(df[[x_var]], na.rm = TRUE), max(df_reference[[x_var]], na.rm = TRUE)), na.rm = TRUE)
|
||||
|
||||
# Extract the R-squared, intercept, and slope from the df (first value)
|
||||
intercept <- df[[paste0("lm_intercept_", rel$x)]][1]
|
||||
slope <- df[[paste0("lm_slope_", rel$x)]][1]
|
||||
r_squared <- df[[paste0("lm_R_squared_", rel$x)]][1]
|
||||
|
||||
# Generate the label for the plot
|
||||
plot_label <- paste("Interaction", rel$x, "vs.", rel$y)
|
||||
@@ -1232,7 +1236,10 @@ generate_correlation_plot_configs <- function(df, df_reference) {
|
||||
lm_line = list(
|
||||
intercept = intercept,
|
||||
slope = slope,
|
||||
color = "tomato3"
|
||||
color = "tomato3",
|
||||
linewidth = 0.8,
|
||||
xmin = xmin,
|
||||
xmax = xmax
|
||||
),
|
||||
color = "gray70",
|
||||
filter_na = TRUE,
|
||||
@@ -1489,10 +1496,10 @@ main <- function() {
|
||||
)
|
||||
|
||||
# Parallelize background and quality control plot generation
|
||||
furrr::future_map(plot_configs, function(config) {
|
||||
generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
|
||||
page_width = config$page_width, page_height = config$page_height)
|
||||
}, .options = furrr_options(seed = TRUE))
|
||||
# furrr::future_map(plot_configs, function(config) {
|
||||
# generate_and_save_plots(config$out_dir, config$filename, config$plot_configs,
|
||||
# page_width = config$page_width, page_height = config$page_height)
|
||||
# }, .options = furrr_options(seed = TRUE))
|
||||
|
||||
# Loop over background strains
|
||||
# TODO currently only tested against one strain, if we want to do multiple strains we'll
|
||||
@@ -1605,77 +1612,77 @@ main <- function() {
|
||||
# deletion_plot_configs <- generate_interaction_plot_configs(df_reference_summary_stats, df_interactions_joined, "deletion")
|
||||
# generate_and_save_plots(out_dir, "interaction_plots", deletion_plot_configs, page_width = 16, page_height = 16)
|
||||
|
||||
message("Writing enhancer/suppressor csv files")
|
||||
interaction_threshold <- 2 # TODO add to study config?
|
||||
enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
|
||||
suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
|
||||
enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
|
||||
suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
|
||||
enhancers_L <- df_interactions[enhancer_condition_L, ]
|
||||
suppressors_L <- df_interactions[suppressor_condition_L, ]
|
||||
enhancers_K <- df_interactions[enhancer_condition_K, ]
|
||||
suppressors_K <- df_interactions[suppressor_condition_K, ]
|
||||
enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
|
||||
enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
|
||||
write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
|
||||
write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
|
||||
write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
|
||||
write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
|
||||
write.csv(enhancers_and_suppressors_L,
|
||||
file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
|
||||
write.csv(enhancers_and_suppressors_K,
|
||||
file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
|
||||
# message("Writing enhancer/suppressor csv files")
|
||||
# interaction_threshold <- 2 # TODO add to study config?
|
||||
# enhancer_condition_L <- df_interactions$Avg_Zscore_L >= interaction_threshold
|
||||
# suppressor_condition_L <- df_interactions$Avg_Zscore_L <= -interaction_threshold
|
||||
# enhancer_condition_K <- df_interactions$Avg_Zscore_K >= interaction_threshold
|
||||
# suppressor_condition_K <- df_interactions$Avg_Zscore_K <= -interaction_threshold
|
||||
# enhancers_L <- df_interactions[enhancer_condition_L, ]
|
||||
# suppressors_L <- df_interactions[suppressor_condition_L, ]
|
||||
# enhancers_K <- df_interactions[enhancer_condition_K, ]
|
||||
# suppressors_K <- df_interactions[suppressor_condition_K, ]
|
||||
# enhancers_and_suppressors_L <- df_interactions[enhancer_condition_L | suppressor_condition_L, ]
|
||||
# enhancers_and_suppressors_K <- df_interactions[enhancer_condition_K | suppressor_condition_K, ]
|
||||
# write.csv(enhancers_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_L.csv"), row.names = FALSE)
|
||||
# write.csv(suppressors_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_L.csv"), row.names = FALSE)
|
||||
# write.csv(enhancers_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_K.csv"), row.names = FALSE)
|
||||
# write.csv(suppressors_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_K.csv"), row.names = FALSE)
|
||||
# write.csv(enhancers_and_suppressors_L,
|
||||
# file = file.path(out_dir, "zscore_interactions_deletion_enhancers_and_suppressors_L.csv"), row.names = FALSE)
|
||||
# write.csv(enhancers_and_suppressors_K,
|
||||
# file = file.path(out_dir, "zscore_interaction_deletion_enhancers_and_suppressors_K.csv"), row.names = FALSE)
|
||||
|
||||
message("Writing linear model enhancer/suppressor csv files")
|
||||
lm_interaction_threshold <- 2 # TODO add to study config?
|
||||
enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
|
||||
suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
|
||||
enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
|
||||
suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
|
||||
write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
|
||||
write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
|
||||
write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
|
||||
write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
|
||||
# message("Writing linear model enhancer/suppressor csv files")
|
||||
# lm_interaction_threshold <- 2 # TODO add to study config?
|
||||
# enhancers_lm_L <- df_interactions[df_interactions$Z_lm_L >= lm_interaction_threshold, ]
|
||||
# suppressors_lm_L <- df_interactions[df_interactions$Z_lm_L <= -lm_interaction_threshold, ]
|
||||
# enhancers_lm_K <- df_interactions[df_interactions$Z_lm_K >= lm_interaction_threshold, ]
|
||||
# suppressors_lm_K <- df_interactions[df_interactions$Z_lm_K <= -lm_interaction_threshold, ]
|
||||
# write.csv(enhancers_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_L.csv"), row.names = FALSE)
|
||||
# write.csv(suppressors_lm_L, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_L.csv"), row.names = FALSE)
|
||||
# write.csv(enhancers_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_enhancers_lm_K.csv"), row.names = FALSE)
|
||||
# write.csv(suppressors_lm_K, file = file.path(out_dir, "zscore_interactions_deletion_suppressors_lm_K.csv"), row.names = FALSE)
|
||||
|
||||
message("Generating rank plots")
|
||||
rank_plot_configs <- generate_rank_plot_configs(
|
||||
df_interactions,
|
||||
is_lm = FALSE,
|
||||
adjust = TRUE
|
||||
)
|
||||
generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
|
||||
page_width = 18, page_height = 12)
|
||||
# message("Generating rank plots")
|
||||
# rank_plot_configs <- generate_rank_plot_configs(
|
||||
# df_interactions,
|
||||
# is_lm = FALSE,
|
||||
# adjust = TRUE
|
||||
# )
|
||||
# generate_and_save_plots(out_dir, "rank_plots", rank_plot_configs,
|
||||
# page_width = 18, page_height = 12)
|
||||
|
||||
message("Generating ranked linear model plots")
|
||||
rank_lm_plot_configs <- generate_rank_plot_configs(
|
||||
df_interactions,
|
||||
is_lm = TRUE,
|
||||
adjust = TRUE
|
||||
)
|
||||
generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
|
||||
page_width = 18, page_height = 12)
|
||||
# message("Generating ranked linear model plots")
|
||||
# rank_lm_plot_configs <- generate_rank_plot_configs(
|
||||
# df_interactions,
|
||||
# is_lm = TRUE,
|
||||
# adjust = TRUE
|
||||
# )
|
||||
# generate_and_save_plots(out_dir, "rank_plots_lm", rank_lm_plot_configs,
|
||||
# page_width = 18, page_height = 12)
|
||||
|
||||
message("Generating overlapped ranked plots")
|
||||
rank_plot_filtered_configs <- generate_rank_plot_configs(
|
||||
df_interactions,
|
||||
is_lm = FALSE,
|
||||
adjust = FALSE,
|
||||
filter_na = TRUE,
|
||||
overlap_color = TRUE
|
||||
)
|
||||
generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
|
||||
page_width = 18, page_height = 12)
|
||||
# message("Generating overlapped ranked plots")
|
||||
# rank_plot_filtered_configs <- generate_rank_plot_configs(
|
||||
# df_interactions,
|
||||
# is_lm = FALSE,
|
||||
# adjust = FALSE,
|
||||
# filter_na = TRUE,
|
||||
# overlap_color = TRUE
|
||||
# )
|
||||
# generate_and_save_plots(out_dir, "rank_plots_na_rm", rank_plot_filtered_configs,
|
||||
# page_width = 18, page_height = 12)
|
||||
|
||||
message("Generating overlapped ranked linear model plots")
|
||||
rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
|
||||
df_interactions,
|
||||
is_lm = TRUE,
|
||||
adjust = FALSE,
|
||||
filter_na = TRUE,
|
||||
overlap_color = TRUE
|
||||
)
|
||||
generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
|
||||
page_width = 18, page_height = 12)
|
||||
# message("Generating overlapped ranked linear model plots")
|
||||
# rank_plot_lm_filtered_configs <- generate_rank_plot_configs(
|
||||
# df_interactions,
|
||||
# is_lm = TRUE,
|
||||
# adjust = FALSE,
|
||||
# filter_na = TRUE,
|
||||
# overlap_color = TRUE
|
||||
# )
|
||||
# generate_and_save_plots(out_dir, "rank_plots_lm_na_rm", rank_plot_lm_filtered_configs,
|
||||
# page_width = 18, page_height = 12)
|
||||
|
||||
message("Generating correlation curve parameter pair plots")
|
||||
correlation_plot_configs <- generate_correlation_plot_configs(
|
||||
|
||||
Reference in New Issue
Block a user