Simplify calculate_interaction_scores()
Tento commit je obsažen v:
@@ -215,7 +215,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
WT_sd_r = sd_r,
|
||||
WT_sd_AUC = sd_AUC
|
||||
) %>%
|
||||
group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>%
|
||||
group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
|
||||
mutate(
|
||||
N = sum(!is.na(L)),
|
||||
NG = sum(NG, na.rm = TRUE),
|
||||
@@ -229,18 +229,20 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
sd = ~sd(., na.rm = TRUE),
|
||||
se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
|
||||
), .names = "{.fn}_{.col}")
|
||||
)
|
||||
) %>%
|
||||
ungroup()
|
||||
|
||||
stats <- stats %>%
|
||||
group_by(OrfRep, Gene, num) %>%
|
||||
mutate(
|
||||
Raw_Shift_L = mean_L[[1]] - bg_means$L,
|
||||
Raw_Shift_K = mean_K[[1]] - bg_means$K,
|
||||
Raw_Shift_r = mean_r[[1]] - bg_means$r,
|
||||
Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC,
|
||||
Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L,
|
||||
Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K,
|
||||
Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r,
|
||||
Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC
|
||||
Raw_Shift_L = first(mean_L) - bg_means$L,
|
||||
Raw_Shift_K = first(mean_K) - bg_means$K,
|
||||
Raw_Shift_r = first(mean_r) - bg_means$r,
|
||||
Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
|
||||
Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
|
||||
Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
|
||||
Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
|
||||
Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
|
||||
)
|
||||
|
||||
stats <- stats %>%
|
||||
@@ -270,111 +272,81 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
Zscore_K = Delta_K / WT_sd_K,
|
||||
Zscore_r = Delta_r / WT_sd_r,
|
||||
Zscore_AUC = Delta_AUC / WT_sd_AUC
|
||||
) %>%
|
||||
ungroup()
|
||||
|
||||
# Create linear models with error handling for missing/insufficient data
|
||||
# This part is a PITA so best to contain it in its own function
|
||||
calculate_lm_values <- function(y, x) {
|
||||
if (length(unique(x)) > 1 && sum(!is.na(y)) > 1) {
|
||||
# Suppress warnings only for perfect fits or similar issues
|
||||
model <- suppressWarnings(lm(y ~ x))
|
||||
coefficients <- coef(model)
|
||||
r_squared <- tryCatch({
|
||||
summary(model)$r.squared
|
||||
}, warning = function(w) {
|
||||
NA # Set r-squared to NA if there's a warning
|
||||
})
|
||||
return(list(intercept = coefficients[1], slope = coefficients[2], r_squared = r_squared))
|
||||
} else {
|
||||
return(list(intercept = NA, slope = NA, r_squared = NA))
|
||||
}
|
||||
}
|
||||
|
||||
lms <- stats %>%
|
||||
group_by(across(all_of(group_vars))) %>%
|
||||
reframe(
|
||||
lm_L = list(calculate_lm_values(Delta_L, conc_num_factor)),
|
||||
lm_K = list(calculate_lm_values(Delta_K, conc_num_factor)),
|
||||
lm_r = list(calculate_lm_values(Delta_r, conc_num_factor)),
|
||||
lm_AUC = list(calculate_lm_values(Delta_AUC, conc_num_factor))
|
||||
)
|
||||
|
||||
lms <- lms %>%
|
||||
mutate(
|
||||
lm_L_intercept = sapply(lm_L, `[[`, "intercept"),
|
||||
lm_L_slope = sapply(lm_L, `[[`, "slope"),
|
||||
lm_L_r_squared = sapply(lm_L, `[[`, "r_squared"),
|
||||
lm_K_intercept = sapply(lm_K, `[[`, "intercept"),
|
||||
lm_K_slope = sapply(lm_K, `[[`, "slope"),
|
||||
lm_K_r_squared = sapply(lm_K, `[[`, "r_squared"),
|
||||
lm_r_intercept = sapply(lm_r, `[[`, "intercept"),
|
||||
lm_r_slope = sapply(lm_r, `[[`, "slope"),
|
||||
lm_r_r_squared = sapply(lm_r, `[[`, "r_squared"),
|
||||
lm_AUC_intercept = sapply(lm_AUC, `[[`, "intercept"),
|
||||
lm_AUC_slope = sapply(lm_AUC, `[[`, "slope"),
|
||||
lm_AUC_r_squared = sapply(lm_AUC, `[[`, "r_squared")
|
||||
) %>%
|
||||
select(-lm_L, -lm_K, -lm_r, -lm_AUC)
|
||||
|
||||
stats <- stats %>%
|
||||
left_join(lms, by = group_vars) %>%
|
||||
mutate(
|
||||
lm_Score_L = lm_L_slope * max_conc + lm_L_intercept,
|
||||
lm_Score_K = lm_K_slope * max_conc + lm_K_intercept,
|
||||
lm_Score_r = lm_r_slope * max_conc + lm_r_intercept,
|
||||
lm_Score_AUC = lm_AUC_slope * max_conc + lm_AUC_intercept,
|
||||
R_Squared_L = lm_L_r_squared,
|
||||
R_Squared_K = lm_K_r_squared,
|
||||
R_Squared_r = lm_r_r_squared,
|
||||
R_Squared_AUC = lm_AUC_r_squared,
|
||||
Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
|
||||
Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
|
||||
Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
|
||||
Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
|
||||
)
|
||||
|
||||
# Calculate linear models and store in own df for now
|
||||
lms <- stats %>%
|
||||
reframe(
|
||||
L = lm(Delta_L ~ conc_num_factor),
|
||||
K = lm(Delta_K ~ conc_num_factor),
|
||||
r = lm(Delta_r ~ conc_num_factor),
|
||||
AUC = lm(Delta_AUC ~ conc_num_factor)
|
||||
)
|
||||
|
||||
stats <- stats %>%
|
||||
mutate(
|
||||
Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
|
||||
Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
|
||||
Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
|
||||
Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
|
||||
lm_Score_L = max_conc * coef(lms$L)[2] + coef(lms$L)[1],
|
||||
lm_Score_K = max_conc * coef(lms$K)[2] + coef(lms$K)[1],
|
||||
lm_Score_r = max_conc * coef(lms$r)[2] + coef(lms$r)[1],
|
||||
lm_Score_AUC = max_conc * coef(lms$AUC)[2] + coef(lms$AUC)[1],
|
||||
R_Squared_L = summary(lms$L)$r.squared,
|
||||
R_Squared_K = summary(lms$K)$r.squared,
|
||||
R_Squared_r = summary(lms$r)$r.squared,
|
||||
R_Squared_AUC = summary(lms$AUC)$r.squared
|
||||
)
|
||||
|
||||
stats <- stats %>%
|
||||
mutate(
|
||||
Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
|
||||
Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
|
||||
Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
|
||||
Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
|
||||
) %>%
|
||||
ungroup()
|
||||
)
|
||||
|
||||
# Declare column order for output
|
||||
calculations <- stats %>%
|
||||
select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
|
||||
"mean_L", "mean_K", "mean_r", "mean_AUC",
|
||||
"median_L", "median_K", "median_r", "median_AUC",
|
||||
"sd_L", "sd_K", "sd_r", "sd_AUC",
|
||||
"se_L", "se_K", "se_r", "se_AUC",
|
||||
"Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
|
||||
"Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
|
||||
"WT_L", "WT_K", "WT_r", "WT_AUC",
|
||||
"WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
|
||||
"Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
|
||||
"Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
|
||||
"Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
|
||||
"NG", "SM", "DB")
|
||||
select(
|
||||
"OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
|
||||
"mean_L", "mean_K", "mean_r", "mean_AUC",
|
||||
"median_L", "median_K", "median_r", "median_AUC",
|
||||
"sd_L", "sd_K", "sd_r", "sd_AUC",
|
||||
"se_L", "se_K", "se_r", "se_AUC",
|
||||
"Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_r", "Raw_Shift_AUC",
|
||||
"Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
|
||||
"WT_L", "WT_K", "WT_r", "WT_AUC",
|
||||
"WT_sd_L", "WT_sd_K", "WT_sd_r", "WT_sd_AUC",
|
||||
"Exp_L", "Exp_K", "Exp_r", "Exp_AUC",
|
||||
"Delta_L", "Delta_K", "Delta_r", "Delta_AUC",
|
||||
"Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
|
||||
"NG", "SM", "DB")
|
||||
|
||||
interactions <- stats %>%
|
||||
select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
|
||||
"Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
|
||||
"lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
|
||||
"R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
|
||||
"Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
|
||||
"Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
|
||||
"Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
|
||||
"NG", "SM", "DB") %>%
|
||||
select(
|
||||
"OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
|
||||
"Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
|
||||
"lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
|
||||
"R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
|
||||
"Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
|
||||
"Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
|
||||
"Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
|
||||
"NG", "SM", "DB") %>%
|
||||
arrange(desc(lm_Score_L)) %>%
|
||||
arrange(desc(NG))
|
||||
|
||||
print(df, n = 1)
|
||||
print(calculations, n = 1)
|
||||
df <- df %>% select(-any_of(setdiff(names(calculations), group_vars)))
|
||||
df <- left_join(df, calculations, by = group_vars)
|
||||
# df <- df %>% select(-any_of(setdiff(names(interactions), group_vars)))
|
||||
|
||||
Odkázat v novém úkolu
Zablokovat Uživatele