Simplify calculate_interaction_scores()

This commit is contained in:
2024-09-13 14:37:31 -04:00
parent 30c03f87cb
commit 74eace8cde

View File

@@ -215,7 +215,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
WT_sd_r = sd_r, WT_sd_r = sd_r,
WT_sd_AUC = sd_AUC WT_sd_AUC = sd_AUC
) %>% ) %>%
group_by(across(all_of(group_vars)), conc_num, conc_num_factor) %>% group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
mutate( mutate(
N = sum(!is.na(L)), N = sum(!is.na(L)),
NG = sum(NG, na.rm = TRUE), NG = sum(NG, na.rm = TRUE),
@@ -229,18 +229,20 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
sd = ~sd(., na.rm = TRUE), sd = ~sd(., na.rm = TRUE),
se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA) se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
), .names = "{.fn}_{.col}") ), .names = "{.fn}_{.col}")
) ) %>%
ungroup()
stats <- stats %>% stats <- stats %>%
group_by(OrfRep, Gene, num) %>%
mutate( mutate(
Raw_Shift_L = mean_L[[1]] - bg_means$L, Raw_Shift_L = first(mean_L) - bg_means$L,
Raw_Shift_K = mean_K[[1]] - bg_means$K, Raw_Shift_K = first(mean_K) - bg_means$K,
Raw_Shift_r = mean_r[[1]] - bg_means$r, Raw_Shift_r = first(mean_r) - bg_means$r,
Raw_Shift_AUC = mean_AUC[[1]] - bg_means$AUC, Raw_Shift_AUC = first(mean_AUC) - bg_means$AUC,
Z_Shift_L = Raw_Shift_L[[1]] / bg_sd$L, Z_Shift_L = first(Raw_Shift_L) / bg_sd$L,
Z_Shift_K = Raw_Shift_K[[1]] / bg_sd$K, Z_Shift_K = first(Raw_Shift_K) / bg_sd$K,
Z_Shift_r = Raw_Shift_r[[1]] / bg_sd$r, Z_Shift_r = first(Raw_Shift_r) / bg_sd$r,
Z_Shift_AUC = Raw_Shift_AUC[[1]] / bg_sd$AUC Z_Shift_AUC = first(Raw_Shift_AUC) / bg_sd$AUC
) )
stats <- stats %>% stats <- stats %>%
@@ -270,86 +272,53 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
Zscore_K = Delta_K / WT_sd_K, Zscore_K = Delta_K / WT_sd_K,
Zscore_r = Delta_r / WT_sd_r, Zscore_r = Delta_r / WT_sd_r,
Zscore_AUC = Delta_AUC / WT_sd_AUC Zscore_AUC = Delta_AUC / WT_sd_AUC
) %>%
ungroup()
# Create linear models with error handling for missing/insufficient data
# This part is a PITA so best to contain it in its own function
calculate_lm_values <- function(y, x) {
if (length(unique(x)) > 1 && sum(!is.na(y)) > 1) {
# Suppress warnings only for perfect fits or similar issues
model <- suppressWarnings(lm(y ~ x))
coefficients <- coef(model)
r_squared <- tryCatch({
summary(model)$r.squared
}, warning = function(w) {
NA # Set r-squared to NA if there's a warning
})
return(list(intercept = coefficients[1], slope = coefficients[2], r_squared = r_squared))
} else {
return(list(intercept = NA, slope = NA, r_squared = NA))
}
}
lms <- stats %>%
group_by(across(all_of(group_vars))) %>%
reframe(
lm_L = list(calculate_lm_values(Delta_L, conc_num_factor)),
lm_K = list(calculate_lm_values(Delta_K, conc_num_factor)),
lm_r = list(calculate_lm_values(Delta_r, conc_num_factor)),
lm_AUC = list(calculate_lm_values(Delta_AUC, conc_num_factor))
) )
lms <- lms %>%
mutate(
lm_L_intercept = sapply(lm_L, `[[`, "intercept"),
lm_L_slope = sapply(lm_L, `[[`, "slope"),
lm_L_r_squared = sapply(lm_L, `[[`, "r_squared"),
lm_K_intercept = sapply(lm_K, `[[`, "intercept"),
lm_K_slope = sapply(lm_K, `[[`, "slope"),
lm_K_r_squared = sapply(lm_K, `[[`, "r_squared"),
lm_r_intercept = sapply(lm_r, `[[`, "intercept"),
lm_r_slope = sapply(lm_r, `[[`, "slope"),
lm_r_r_squared = sapply(lm_r, `[[`, "r_squared"),
lm_AUC_intercept = sapply(lm_AUC, `[[`, "intercept"),
lm_AUC_slope = sapply(lm_AUC, `[[`, "slope"),
lm_AUC_r_squared = sapply(lm_AUC, `[[`, "r_squared")
) %>%
select(-lm_L, -lm_K, -lm_r, -lm_AUC)
stats <- stats %>% stats <- stats %>%
left_join(lms, by = group_vars) %>%
mutate( mutate(
lm_Score_L = lm_L_slope * max_conc + lm_L_intercept,
lm_Score_K = lm_K_slope * max_conc + lm_K_intercept,
lm_Score_r = lm_r_slope * max_conc + lm_r_intercept,
lm_Score_AUC = lm_AUC_slope * max_conc + lm_AUC_intercept,
R_Squared_L = lm_L_r_squared,
R_Squared_K = lm_K_r_squared,
R_Squared_r = lm_r_r_squared,
R_Squared_AUC = lm_AUC_r_squared,
Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE), Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE), Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE), Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE) Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
) )
# Calculate linear models and store in own df for now
lms <- stats %>%
reframe(
L = lm(Delta_L ~ conc_num_factor),
K = lm(Delta_K ~ conc_num_factor),
r = lm(Delta_r ~ conc_num_factor),
AUC = lm(Delta_AUC ~ conc_num_factor)
)
stats <- stats %>% stats <- stats %>%
mutate( mutate(
Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs, Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs, Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1), Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1), Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
lm_Score_L = max_conc * coef(lms$L)[2] + coef(lms$L)[1],
lm_Score_K = max_conc * coef(lms$K)[2] + coef(lms$K)[1],
lm_Score_r = max_conc * coef(lms$r)[2] + coef(lms$r)[1],
lm_Score_AUC = max_conc * coef(lms$AUC)[2] + coef(lms$AUC)[1],
R_Squared_L = summary(lms$L)$r.squared,
R_Squared_K = summary(lms$K)$r.squared,
R_Squared_r = summary(lms$r)$r.squared,
R_Squared_AUC = summary(lms$AUC)$r.squared
)
stats <- stats %>%
mutate(
Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE), Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE), Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE), Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE) Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
) %>% )
ungroup()
# Declare column order for output # Declare column order for output
calculations <- stats %>% calculations <- stats %>%
select("OrfRep", "Gene", "num", "conc_num", "conc_num_factor", select(
"OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
"mean_L", "mean_K", "mean_r", "mean_AUC", "mean_L", "mean_K", "mean_r", "mean_AUC",
"median_L", "median_K", "median_r", "median_AUC", "median_L", "median_K", "median_r", "median_AUC",
"sd_L", "sd_K", "sd_r", "sd_AUC", "sd_L", "sd_K", "sd_r", "sd_AUC",
@@ -364,7 +333,8 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
"NG", "SM", "DB") "NG", "SM", "DB")
interactions <- stats %>% interactions <- stats %>%
select("OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r", select(
"OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
"Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC", "Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
"lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r", "lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
"R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC", "R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
@@ -375,6 +345,8 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
arrange(desc(lm_Score_L)) %>% arrange(desc(lm_Score_L)) %>%
arrange(desc(NG)) arrange(desc(NG))
print(df, n = 1)
print(calculations, n = 1)
df <- df %>% select(-any_of(setdiff(names(calculations), group_vars))) df <- df %>% select(-any_of(setdiff(names(calculations), group_vars)))
df <- left_join(df, calculations, by = group_vars) df <- left_join(df, calculations, by = group_vars)
# df <- df %>% select(-any_of(setdiff(names(interactions), group_vars))) # df <- df %>% select(-any_of(setdiff(names(interactions), group_vars)))