Improve the interactions df
This commit is contained in:
@@ -187,7 +187,6 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
|
||||
# Calculate total concentration variables
|
||||
total_conc_num <- length(unique(df$conc_num))
|
||||
num_non_removed_concs <- total_conc_num - sum(df$DB, na.rm = TRUE) - 1
|
||||
|
||||
# Pull the background means and standard deviations from zero concentration
|
||||
bg_means <- list(
|
||||
@@ -204,6 +203,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
AUC = df %>% filter(conc_num_factor == 0) %>% pull(sd_AUC) %>% first()
|
||||
)
|
||||
|
||||
# Grab these values from the original df before mutating the new stats
|
||||
stats <- df %>%
|
||||
mutate(
|
||||
WT_L = mean_L,
|
||||
@@ -214,9 +214,11 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
WT_sd_K = sd_K,
|
||||
WT_sd_r = sd_r,
|
||||
WT_sd_AUC = sd_AUC
|
||||
) %>%
|
||||
)
|
||||
|
||||
stats <- stats %>%
|
||||
group_by(OrfRep, Gene, num, conc_num, conc_num_factor) %>%
|
||||
mutate(
|
||||
summarise(
|
||||
N = sum(!is.na(L)),
|
||||
NG = sum(NG, na.rm = TRUE),
|
||||
DB = sum(DB, na.rm = TRUE),
|
||||
@@ -229,8 +231,7 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
sd = ~sd(., na.rm = TRUE),
|
||||
se = ~ifelse(sum(!is.na(.)) > 1, sd(., na.rm = TRUE) / sqrt(sum(!is.na(.)) - 1), NA)
|
||||
), .names = "{.fn}_{.col}")
|
||||
) %>%
|
||||
ungroup()
|
||||
)
|
||||
|
||||
stats <- stats %>%
|
||||
group_by(OrfRep, Gene, num) %>%
|
||||
@@ -274,51 +275,61 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
Zscore_AUC = Delta_AUC / WT_sd_AUC
|
||||
)
|
||||
|
||||
stats <- stats %>%
|
||||
mutate(
|
||||
# Calculate linear models
|
||||
lm_L <- lm(Delta_L ~ conc_num_factor, data = stats)
|
||||
lm_K <- lm(Delta_K ~ conc_num_factor, data = stats)
|
||||
lm_r <- lm(Delta_r ~ conc_num_factor, data = stats)
|
||||
lm_AUC <- lm(Delta_AUC ~ conc_num_factor, data = stats)
|
||||
|
||||
interactions <- stats %>%
|
||||
transmute(
|
||||
OrfRep = first(OrfRep),
|
||||
Gene = first(Gene),
|
||||
Raw_Shift_L = first(Raw_Shift_L),
|
||||
Raw_Shift_K = first(Raw_Shift_K),
|
||||
Raw_Shift_r = first(Raw_Shift_r),
|
||||
Raw_Shift_AUC = first(Raw_Shift_AUC),
|
||||
Z_Shift_L = first(Z_Shift_L),
|
||||
Z_Shift_K = first(Z_Shift_K),
|
||||
Z_Shift_r = first(Z_Shift_r),
|
||||
Z_Shift_AUC = first(Z_Shift_AUC),
|
||||
Sum_Zscore_L = sum(Zscore_L, na.rm = TRUE),
|
||||
Sum_Zscore_K = sum(Zscore_K, na.rm = TRUE),
|
||||
Sum_Zscore_r = sum(Zscore_r, na.rm = TRUE),
|
||||
Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE)
|
||||
Sum_Zscore_AUC = sum(Zscore_AUC, na.rm = TRUE),
|
||||
lm_Score_L = max_conc * coef(lm_L)[2] + coef(lm_L)[1],
|
||||
lm_Score_K = max_conc * coef(lm_K)[2] + coef(lm_K)[1],
|
||||
lm_Score_r = max_conc * coef(lm_r)[2] + coef(lm_r)[1],
|
||||
lm_Score_AUC = max_conc * coef(lm_AUC)[2] + coef(lm_AUC)[1],
|
||||
R_Squared_L = summary(lm_L)$r.squared,
|
||||
R_Squared_K = summary(lm_K)$r.squared,
|
||||
R_Squared_r = summary(lm_r)$r.squared,
|
||||
R_Squared_AUC = summary(lm_AUC)$r.squared,
|
||||
NG = sum(NG, na.rm = TRUE),
|
||||
DB = sum(DB, na.rm = TRUE),
|
||||
SM = sum(SM, na.rm = TRUE)
|
||||
)
|
||||
|
||||
# Calculate linear models and store in own df for now
|
||||
lms <- stats %>%
|
||||
reframe(
|
||||
L = lm(Delta_L ~ conc_num_factor),
|
||||
K = lm(Delta_K ~ conc_num_factor),
|
||||
r = lm(Delta_r ~ conc_num_factor),
|
||||
AUC = lm(Delta_AUC ~ conc_num_factor)
|
||||
)
|
||||
|
||||
stats <- stats %>%
|
||||
num_non_removed_concs <- total_conc_num - sum(stats$DB, na.rm = TRUE) - 1
|
||||
|
||||
interactions <- interactions %>%
|
||||
mutate(
|
||||
Avg_Zscore_L = Sum_Zscore_L / num_non_removed_concs,
|
||||
Avg_Zscore_K = Sum_Zscore_K / num_non_removed_concs,
|
||||
Avg_Zscore_r = Sum_Zscore_r / (total_conc_num - 1),
|
||||
Avg_Zscore_AUC = Sum_Zscore_AUC / (total_conc_num - 1),
|
||||
lm_Score_L = max_conc * coef(lms$L)[2] + coef(lms$L)[1],
|
||||
lm_Score_K = max_conc * coef(lms$K)[2] + coef(lms$K)[1],
|
||||
lm_Score_r = max_conc * coef(lms$r)[2] + coef(lms$r)[1],
|
||||
lm_Score_AUC = max_conc * coef(lms$AUC)[2] + coef(lms$AUC)[1],
|
||||
R_Squared_L = summary(lms$L)$r.squared,
|
||||
R_Squared_K = summary(lms$K)$r.squared,
|
||||
R_Squared_r = summary(lms$r)$r.squared,
|
||||
R_Squared_AUC = summary(lms$AUC)$r.squared
|
||||
)
|
||||
|
||||
stats <- stats %>%
|
||||
mutate(
|
||||
Z_lm_L = (lm_Score_L - mean(lm_Score_L, na.rm = TRUE)) / sd(lm_Score_L, na.rm = TRUE),
|
||||
Z_lm_K = (lm_Score_K - mean(lm_Score_K, na.rm = TRUE)) / sd(lm_Score_K, na.rm = TRUE),
|
||||
Z_lm_r = (lm_Score_r - mean(lm_Score_r, na.rm = TRUE)) / sd(lm_Score_r, na.rm = TRUE),
|
||||
Z_lm_AUC = (lm_Score_AUC - mean(lm_Score_AUC, na.rm = TRUE)) / sd(lm_Score_AUC, na.rm = TRUE)
|
||||
)
|
||||
) %>%
|
||||
arrange(desc(Z_lm_L)) %>%
|
||||
arrange(desc(NG))
|
||||
|
||||
# Declare column order for output
|
||||
calculations <- stats %>%
|
||||
select(
|
||||
"OrfRep", "Gene", "num", "conc_num", "conc_num_factor",
|
||||
"OrfRep", "Gene", "conc_num", "conc_num_factor", "N",
|
||||
"mean_L", "mean_K", "mean_r", "mean_AUC",
|
||||
"median_L", "median_K", "median_r", "median_AUC",
|
||||
"sd_L", "sd_K", "sd_r", "sd_AUC",
|
||||
@@ -332,23 +343,8 @@ calculate_interaction_scores <- function(df, max_conc, variables, group_vars = c
|
||||
"Zscore_L", "Zscore_K", "Zscore_r", "Zscore_AUC",
|
||||
"NG", "SM", "DB")
|
||||
|
||||
interactions <- stats %>%
|
||||
select(
|
||||
"OrfRep", "Gene", "num", "Raw_Shift_L", "Raw_Shift_K", "Raw_Shift_AUC", "Raw_Shift_r",
|
||||
"Z_Shift_L", "Z_Shift_K", "Z_Shift_r", "Z_Shift_AUC",
|
||||
"lm_Score_L", "lm_Score_K", "lm_Score_AUC", "lm_Score_r",
|
||||
"R_Squared_L", "R_Squared_K", "R_Squared_r", "R_Squared_AUC",
|
||||
"Sum_Zscore_L", "Sum_Zscore_K", "Sum_Zscore_r", "Sum_Zscore_AUC",
|
||||
"Avg_Zscore_L", "Avg_Zscore_K", "Avg_Zscore_r", "Avg_Zscore_AUC",
|
||||
"Z_lm_L", "Z_lm_K", "Z_lm_r", "Z_lm_AUC",
|
||||
"NG", "SM", "DB") %>%
|
||||
arrange(desc(lm_Score_L)) %>%
|
||||
arrange(desc(NG))
|
||||
|
||||
print(df, n = 1)
|
||||
print(calculations, n = 1)
|
||||
df <- df %>% select(-any_of(setdiff(names(calculations), group_vars)))
|
||||
df <- left_join(df, calculations, by = group_vars)
|
||||
df <- df %>% select(-any_of(setdiff(names(calculations), OrfRep, Gene, num, conc_num, conc_num_factor)))
|
||||
df <- left_join(df, calculations, by = c("OrfRep", "Gene", "num", "conc_num", "conc_num_factor"))
|
||||
# df <- df %>% select(-any_of(setdiff(names(interactions), group_vars)))
|
||||
# df <- left_join(df, interactions, by = group_vars)
|
||||
|
||||
|
||||
@@ -681,10 +681,10 @@ install_dependencies() {
|
||||
echo "If you do not have sudo access, you may want to use toolbox"
|
||||
case "$(uname -s)" in
|
||||
Linux*|CYGWIN*|MINGW*)
|
||||
if hash dnf &>/dev/null; then
|
||||
if command -v dnf &>/dev/null; then
|
||||
ask "Detected Linux RPM platform, continue?" || return 1
|
||||
sudo dnf install "${depends_rpm[@]}"
|
||||
elif hash apt &>/dev/null; then
|
||||
elif command -v apt &>/dev/null; then
|
||||
ask "Detected Linux DEB platform, continue?" || return 1
|
||||
sudo apt install "${depends_deb[@]}"
|
||||
else
|
||||
@@ -753,7 +753,7 @@ install_dependencies() {
|
||||
fi
|
||||
echo ""
|
||||
|
||||
hash "$MATLAB" &>/dev/null || echo "You will also need MATLAB installed for GUI modules"
|
||||
command -v "$MATLAB" &>/dev/null || echo "You will also need MATLAB installed for GUI modules"
|
||||
}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user